Weber, R. W. S. Biology and control of the Apple canker fungus Neonectria ditissima (syn. N. galligena) from a Northwestern European perspective. Erwerbs-Obstbau 56, 95–107 (2014).
Ghasemkhani, M. Resistance against fruit tree canker in apple (SLU, 2015).
Gómez-Cortecero, A. et al. Variation in host and pathogen in the Neonectria/Malus Interaction; toward an Understanding of the genetic basis of resistance to European canker. Front. Plant. Sci. 7, 1365 (2016).
Bus, V. G. M. et al. Genetic mapping of the European canker (Neonectria ditissima) resistance locus Rnd1 from Malus ‘Robusta 5’. Tree Genet. Genomes. 15, 25 (2019).
Karlström, A. et al. Identification of novel genetic regions associated with resistance to European canker in Apple. BMC Plant. Biol. 22, 452 (2022).
Bus, V. et al. Preliminary genetic mapping of fire blight and European canker resistances in two apple breeding families. Acta Hortic. 199–204. https://doi.org/10.17660/ActaHortic.2021.1307.31 (2021).
Skytte af Sätra, J., Odilbekov, F., Ingvarsson, P. K., van de Weg, E. & Garkava-Gustavsson, L. Parametric mapping of QTL for resistance to European canker in Apple in ‘Aroma’ × ‘Discovery’. Tree Genet. Genomes. 19, 12 (2023).
Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).
Stephens, C., Hammond-Kosack, K. E. & Kanyuka, K. WAKsing plant immunity, waning diseases. J. Exp. Bot. 73, 22–37 (2022).
Liu, X. et al. PacBio full-length transcriptome of wild Apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genom. 22, 52 (2021).
Dixon, R. A. et al. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant. Pathol. 3, 371–390 (2002).
Kaur, S. et al. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants. 28, 485–504 (2022).
Liao, W. et al. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct. Integr. Genomics. 14, 517–529 (2014).
Li, P. et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in Poplar stems. Sci. Rep. 9, 10111 (2019).
Purohit, A. et al. Comparative transcriptomic profiling of susceptible and resistant cultivars of Pigeonpea demonstrates early molecular responses during Fusarium Udum infection. Sci. Rep. 11, 22319 (2021).
Bergmann, T. et al. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum. Theor. Appl. Genet. 136, 86 (2023).
Wang, J. et al. Pangenome-Wide association study and transcriptome analysis reveal a novel QTL and candidate genes controlling both panicle and leaf blast resistance in rice. Rice (N Y). 17, 27 (2024).
Fredericksen, M., Fields, P. D., Pasquier, D., Ricci, L., Ebert, D. & V. & QTL study reveals candidate genes underlying host resistance in a red queen model system. PLoS Genet. 19, e1010570 (2023).
Sia, J., Zhang, W., Cheng, M., Bogdan, P. & Cook, D. E. Machine learning-based identification of general transcriptional predictors for plant disease. New. Phytol. 245, 785–806 (2025).
Panahi, B. & Hassani, M. Hosseinzaeh Gharajeh, N. Integrative analysis of RNA-Seq data and machine learning approaches to identify biomarkers for Rhizoctonia Solani resistance in sugar beet. Biochem. Biophys. Rep. 41, 101920 (2025).
Gómez-Cortecero, A. The Molecular Basis of Pathogenicity of Neonectria Ditissima (University of Reading, 2019).
Aronesty, E. Comparison of sequencing utility programs. Open. Bioinforma J. 7, 1–8 (2013).
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Bioinformatics, 2023).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017).
Diaz-Uriarte, R. & GeneSrF VarSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinform. 8, 328 (2007).
Friedman, J. H. & Meulman, J. J. Clustering objects on subsets of attributes (with discussion). J. Royal Stat. Soc. B. 66, 815–849 (2004).
Delgado, A., García-Fernández, B., Gómez-Cortecero, A. & Dapena, E. Susceptibility of Cider Apple Accessions to European Canker-Comparison between Evaluations in Field Planted Trees and Rapid Screening Tests. Plants 11, (2022).
Shuttleworth, L. A., Newman, S. & Korkos, I. A comparison of new and existing rootstocks to reduce canker of Apple trees caused by Neonectria ditissima (Nectriaceae, Hypocreales). CABI Agric. Biosci. 4, 37 (2023).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter Estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).
Jung, S. et al. 15 years of GDR: new data and functionality in the genome database for rosaceae. Nucleic Acids Res. 47, D1137–D1145 (2019).
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb). 2, 100141 (2021).
Kanehisa, M. & Goto, S. K. E. G. G. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinf. 20, 492–503 (2019).
Dong, N. Q. & Lin, H. X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant. Biol. 63, 180–209 (2021).
Sun, H. et al. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem. Biophys. Res. Commun. 430, 1151–1156 (2013).
Alariqi, M. et al. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. Plant. J. 115, 190–204 (2023).
Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated Metabolo-Transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE. 11, e0155851 (2016).
Li, P., Ruan, Z., Fei, Z., Yan, J. & Tang, G. Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis May dominate the resistance of Zanthoxylum bungeanum against stem canker. J. Agric. Food Chem. 69, 6360–6378 (2021).
Xu, J., Wang, X. & Guo, W. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agric. 14, 1673–1686 (2015).
Miedes, E., Vanholme, R., Boerjan, W. & Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant. Sci. 5, 358 (2014).
Liu, L., Liu, J. & Xu, N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. Front. Plant. Sci. 14, 1201805 (2023).
Pi, L. et al. A G-type lectin receptor-like kinase in Nicotiana benthamiana enhances resistance to the fungal pathogen Sclerotinia sclerotiorum by complexing with CERK1/LYK4. Phytopathol. Res. 5, 27 (2023).
Bao, Y. et al. A pair of G-type lectin receptor-like kinases modulates nlp20-mediated immune responses by coupling to the RLP23 receptor complex. J. Integr. Plant. Biol. 65, 1312–1327 (2023).
Ortiz-Morea, F. A., Liu, J., Shan, L. & He, P. Malectin-like receptor kinases as protector deities in plant immunity. Nat. Plants. 8, 27–37 (2022).
Taylor, R. J., Tagiltsev, G. & Briggs, J. A. G. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett. 597, 819–835 (2023).
Li, Y., Liu, Y. & Zolman, B. K. Metabolic alterations in the Enoyl-CoA hydratase 2 mutant disrupt peroxisomal pathways in seedlings. Plant. Physiol. 180, 1860–1876 (2019).
Song, L., Fang, Y., Chen, L., Wang, J. & Chen, X. Role of non-coding RNAs in plant immunity. Plant. Commun. 2, 100180 (2021).
Harkenrider, M. et al. Overexpression of rice Wall-Associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS ONE. 11, e0147310 (2016).
Liu, Z. et al. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 8, e1002467 (2012).
Zuo, C. et al. Genome-wide annotation and expression responses to biotic stresses of the WALL-ASSOCIATED KINASE – RECEPTOR-LIKE KINASE (WAK-RLK) gene family in Apple (Malus domestica). Eur. J. Plant. Pathol. 153, 1–15 (2018).
Guo, L. et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. USA. 115, 11637–11642 (2018).
Dutta, T. K. et al. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC Plant. Biol. 23, 390 (2023).
Nakao, M., Nakamura, R., Kita, K., Inukai, R. & Ishikawa, A. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci. Rep. 1, 171 (2011).
Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998–1001 (2009).
Cheng, Y., Xu, S. M., Santucci, K., Lindner, G. & Janitz, M. Machine learning and related approaches in transcriptomics. Biochem. Biophys. Res. Commun. 724, 150225 (2024).