Identifying key genes for European canker resistance in apple: machine learning and gene expression profiling of quantitative disease resistance

  • Weber, R. W. S. Biology and control of the Apple canker fungus Neonectria ditissima (syn. N. galligena) from a Northwestern European perspective. Erwerbs-Obstbau 56, 95–107 (2014).

    Google Scholar 

  • Ghasemkhani, M. Resistance against fruit tree canker in apple (SLU, 2015).

  • Gómez-Cortecero, A. et al. Variation in host and pathogen in the Neonectria/Malus Interaction; toward an Understanding of the genetic basis of resistance to European canker. Front. Plant. Sci. 7, 1365 (2016).

    Google Scholar 

  • Bus, V. G. M. et al. Genetic mapping of the European canker (Neonectria ditissima) resistance locus Rnd1 from Malus ‘Robusta 5’. Tree Genet. Genomes. 15, 25 (2019).

    Google Scholar 

  • Karlström, A. et al. Identification of novel genetic regions associated with resistance to European canker in Apple. BMC Plant. Biol. 22, 452 (2022).

    Google Scholar 

  • Bus, V. et al. Preliminary genetic mapping of fire blight and European canker resistances in two apple breeding families. Acta Hortic. 199–204. https://doi.org/10.17660/ActaHortic.2021.1307.31 (2021).

  • Skytte af Sätra, J., Odilbekov, F., Ingvarsson, P. K., van de Weg, E. & Garkava-Gustavsson, L. Parametric mapping of QTL for resistance to European canker in Apple in ‘Aroma’ × ‘Discovery’. Tree Genet. Genomes. 19, 12 (2023).

    Google Scholar 

  • Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

    Google Scholar 

  • Stephens, C., Hammond-Kosack, K. E. & Kanyuka, K. WAKsing plant immunity, waning diseases. J. Exp. Bot. 73, 22–37 (2022).

    Google Scholar 

  • Liu, X. et al. PacBio full-length transcriptome of wild Apple (Malus sieversii) provides insights into canker disease dynamic response. BMC Genom. 22, 52 (2021).

    Google Scholar 

  • Dixon, R. A. et al. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant. Pathol. 3, 371–390 (2002).

    Google Scholar 

  • Kaur, S. et al. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants. 28, 485–504 (2022).

    Google Scholar 

  • Liao, W. et al. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct. Integr. Genomics. 14, 517–529 (2014).

    Google Scholar 

  • Li, P. et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in Poplar stems. Sci. Rep. 9, 10111 (2019).

    Google Scholar 

  • Purohit, A. et al. Comparative transcriptomic profiling of susceptible and resistant cultivars of Pigeonpea demonstrates early molecular responses during Fusarium Udum infection. Sci. Rep. 11, 22319 (2021).

    Google Scholar 

  • Bergmann, T. et al. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum. Theor. Appl. Genet. 136, 86 (2023).

    Google Scholar 

  • Wang, J. et al. Pangenome-Wide association study and transcriptome analysis reveal a novel QTL and candidate genes controlling both panicle and leaf blast resistance in rice. Rice (N Y). 17, 27 (2024).

    Google Scholar 

  • Fredericksen, M., Fields, P. D., Pasquier, D., Ricci, L., Ebert, D. & V. & QTL study reveals candidate genes underlying host resistance in a red queen model system. PLoS Genet. 19, e1010570 (2023).

    Google Scholar 

  • Sia, J., Zhang, W., Cheng, M., Bogdan, P. & Cook, D. E. Machine learning-based identification of general transcriptional predictors for plant disease. New. Phytol. 245, 785–806 (2025).

    Google Scholar 

  • Panahi, B. & Hassani, M. Hosseinzaeh Gharajeh, N. Integrative analysis of RNA-Seq data and machine learning approaches to identify biomarkers for Rhizoctonia Solani resistance in sugar beet. Biochem. Biophys. Rep. 41, 101920 (2025).

    Google Scholar 

  • Gómez-Cortecero, A. The Molecular Basis of Pathogenicity of Neonectria Ditissima (University of Reading, 2019).

  • Aronesty, E. Comparison of sequencing utility programs. Open. Bioinforma J. 7, 1–8 (2013).

    Google Scholar 

  • Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Bioinformatics, 2023).

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017).

    Google Scholar 

  • Diaz-Uriarte, R. & GeneSrF VarSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinform. 8, 328 (2007).

    Google Scholar 

  • Friedman, J. H. & Meulman, J. J. Clustering objects on subsets of attributes (with discussion). J. Royal Stat. Soc. B. 66, 815–849 (2004).

    Google Scholar 

  • Delgado, A., García-Fernández, B., Gómez-Cortecero, A. & Dapena, E. Susceptibility of Cider Apple Accessions to European Canker-Comparison between Evaluations in Field Planted Trees and Rapid Screening Tests. Plants 11, (2022).

  • Shuttleworth, L. A., Newman, S. & Korkos, I. A comparison of new and existing rootstocks to reduce canker of Apple trees caused by Neonectria ditissima (Nectriaceae, Hypocreales). CABI Agric. Biosci. 4, 37 (2023).

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Google Scholar 

  • Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter Estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).

    Google Scholar 

  • Jung, S. et al. 15 years of GDR: new data and functionality in the genome database for rosaceae. Nucleic Acids Res. 47, D1137–D1145 (2019).

    Google Scholar 

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  • Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb). 2, 100141 (2021).

    Google Scholar 

  • Kanehisa, M. & Goto, S. K. E. G. G. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  • Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Google Scholar 

  • Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinf. 20, 492–503 (2019).

    Google Scholar 

  • Dong, N. Q. & Lin, H. X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant. Biol. 63, 180–209 (2021).

    Google Scholar 

  • Sun, H. et al. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem. Biophys. Res. Commun. 430, 1151–1156 (2013).

    Google Scholar 

  • Alariqi, M. et al. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. Plant. J. 115, 190–204 (2023).

    Google Scholar 

  • Dhokane, D., Karre, S., Kushalappa, A. C. & McCartney, C. Integrated Metabolo-Transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS ONE. 11, e0155851 (2016).

    Google Scholar 

  • Li, P., Ruan, Z., Fei, Z., Yan, J. & Tang, G. Integrated transcriptome and metabolome analysis revealed that flavonoid biosynthesis May dominate the resistance of Zanthoxylum bungeanum against stem canker. J. Agric. Food Chem. 69, 6360–6378 (2021).

    Google Scholar 

  • Xu, J., Wang, X. & Guo, W. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agric. 14, 1673–1686 (2015).

    Google Scholar 

  • Miedes, E., Vanholme, R., Boerjan, W. & Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant. Sci. 5, 358 (2014).

    Google Scholar 

  • Liu, L., Liu, J. & Xu, N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. Front. Plant. Sci. 14, 1201805 (2023).

    Google Scholar 

  • Pi, L. et al. A G-type lectin receptor-like kinase in Nicotiana benthamiana enhances resistance to the fungal pathogen Sclerotinia sclerotiorum by complexing with CERK1/LYK4. Phytopathol. Res. 5, 27 (2023).

    Google Scholar 

  • Bao, Y. et al. A pair of G-type lectin receptor-like kinases modulates nlp20-mediated immune responses by coupling to the RLP23 receptor complex. J. Integr. Plant. Biol. 65, 1312–1327 (2023).

    Google Scholar 

  • Ortiz-Morea, F. A., Liu, J., Shan, L. & He, P. Malectin-like receptor kinases as protector deities in plant immunity. Nat. Plants. 8, 27–37 (2022).

    Google Scholar 

  • Taylor, R. J., Tagiltsev, G. & Briggs, J. A. G. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett. 597, 819–835 (2023).

    Google Scholar 

  • Li, Y., Liu, Y. & Zolman, B. K. Metabolic alterations in the Enoyl-CoA hydratase 2 mutant disrupt peroxisomal pathways in seedlings. Plant. Physiol. 180, 1860–1876 (2019).

    Google Scholar 

  • Song, L., Fang, Y., Chen, L., Wang, J. & Chen, X. Role of non-coding RNAs in plant immunity. Plant. Commun. 2, 100180 (2021).

    Google Scholar 

  • Harkenrider, M. et al. Overexpression of rice Wall-Associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS ONE. 11, e0147310 (2016).

    Google Scholar 

  • Liu, Z. et al. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 8, e1002467 (2012).

    Google Scholar 

  • Zuo, C. et al. Genome-wide annotation and expression responses to biotic stresses of the WALL-ASSOCIATED KINASE – RECEPTOR-LIKE KINASE (WAK-RLK) gene family in Apple (Malus domestica). Eur. J. Plant. Pathol. 153, 1–15 (2018).

    Google Scholar 

  • Guo, L. et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. USA. 115, 11637–11642 (2018).

    Google Scholar 

  • Dutta, T. K. et al. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC Plant. Biol. 23, 390 (2023).

    Google Scholar 

  • Nakao, M., Nakamura, R., Kita, K., Inukai, R. & Ishikawa, A. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci. Rep. 1, 171 (2011).

    Google Scholar 

  • Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998–1001 (2009).

    Google Scholar 

  • Cheng, Y., Xu, S. M., Santucci, K., Lindner, G. & Janitz, M. Machine learning and related approaches in transcriptomics. Biochem. Biophys. Res. Commun. 724, 150225 (2024).

    Google Scholar 

  • Continue Reading