Modeling trap dynamics in oxide-engineered heterostructure TFETs for breast cancer detection

  • Bray, F. et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).

    Google Scholar 

  • Skaane, P. et al. Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up anstilld final results of Oslo II study. Radiology244(3), 708–717 (2007).

    Google Scholar 

  • Carney, P. A. et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med.138(3), 168–175 (2003).

    Google Scholar 

  • Lord, S. et al. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur. J. Cancer43(13), 1905–1917 (2007).

    Google Scholar 

  • Al-Foheidi, M. et al. Breast cancer screening: review of benefits and harms, and recommendations for developing and low-income countries. Med. Oncol.30, 1–15 (2013).

    Google Scholar 

  • Ghosh, R. Performance investigation of dual trench split-control-gate MOSFET as hydrogen gas sensor: A catalytic metal gate approach. IEEE Sensors Letters7(5), 1–4 (2023).

    Google Scholar 

  • Park, J.-T. & Colinge, J.-P. Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices49(12), 2222–2229 (2002).

    Google Scholar 

  • Ghosh, R. et al. Sensitivity analysis of bi-metal stacked-gate-oxide hetero-juncture tunnel fet with Si\(_{0.6}\)Ge\(_{0.4}\) source biosensor considering non-ideal factors. PLoS ONE19(6), e0301479 (2024).

    Google Scholar 

  • Shreya, S. et al. Core-shell junctionless nanotube tunnel field effect transistor: Design and sensitivity analysis for biosensing application. IEEE Sens. J.20(2), 672–679 (2019).

    Google Scholar 

  • Ghosh, R. et al. Investigation of gate-engineered heterostructure tunnel field effect transistor as a label-free biosensor: a compact study. Appl. Phys. A129(2), 94 (2023).

    Google Scholar 

  • Bhattacharyya, A. et al. Analysis of noise-immune dopingless heterojunction bio-TFET considering partial hybridization issue. IEEE Trans. Nanotechnol.19, 769–777 (2020).

    Google Scholar 

  • Im, H. et al. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol.2(7), 430–434 (2007).

    Google Scholar 

  • Hussein, M. et al. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci. Rep.9(1), 4681 (2019).

    Google Scholar 

  • Singh, S. et al. Dopingless negative capacitance ferroelectric TFET for breast cancer cells detection: Design and sensitivity analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control69(3), 1120–1129 (2021).

    Google Scholar 

  • Azizi, M. et al. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci. Rep.7(1), 5178 (2017).

    Google Scholar 

  • Venugopal, K. et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of syzygium aromaticum. J. Photochem. Photobiol., B167, 282–289 (2017).

    Google Scholar 

  • Dwivedi, P. et al. Dielectric modulated biosensor architecture: Tunneling or accumulation based transistor?. IEEE Sens. J.18(8), 3228–3235 (2018).

    Google Scholar 

  • Yadav, S. et al. A dielectric modulated biosensor for SARS-CoV-2. IEEE Sens. J.21(13), 14483–14490 (2020).

    Google Scholar 

  • Ghosh, R. et al. Theoretical insights into the impact of border and interface traps on hysteresis in monolayer MoS\(_2\) FETs. Microelectron. Eng.299, 112333 (2025).

    Google Scholar 

  • Kumar, P. et al. Assessment of interface trapped charge induced threshold voltage hysteresis effect in gate-all-around TFET. Micro and Nanostructures175, 207502 (2023).

    Google Scholar 

  • Illarionov, Y. Y. et al. Improved hysteresis and reliability of MoS\(_2\) transistors with high-quality CVD growth and Al\(_2\)O\(_3\) encapsulation. IEEE Electron Device Lett.38(12), 1763–1766 (2017).

    Google Scholar 

  • Heiman, F. et al. The effects of oxide traps on the MOS capacitance. IEEE Trans. Electron Devices12(4), 167–178 (1965).

    Google Scholar 

  • Ghosh, R. et al. Modeling the impact of interface and border traps on hysteresis in encapsulated monolayer MoS\(_2\) based double gated FETs. In in 2024 Austrochip Workshop on Microelectronics (Austrochip) 1–4 (IEEE, 2024).

    Google Scholar 

  • Illarionov, Y. Y. et al. The role of charge trapping in MoS\(_2\)/SiO\(_2\) and MoS\(_2\)/hBN field-effect transistors. 2D Materials3(3), 035004 (2016).

    Google Scholar 

  • Sant, S. et al. Lateral InAs/Si P-type tunnel FETs integrated on Si-Part 2: Simulation study of the impact of interface traps. IEEE Trans. Electron Devices63(11), 4240–4247 (2016).

    Google Scholar 

  • Das, A. et al. Numerical simulation of dielectric modulated cylindrical schottky nanowire FETs for enhanced analog performance. ECS Journal of Solid State Science and Technology14(5), 053006 (2025).

    Google Scholar 

  • Das, A. et al. Analytical characterization of a label free Si/InAs hetero-interfaced cylindrical BioFETD for biosensing applications. Micro and Nanostructures204, 208152 (2025).

    Google Scholar 

  • Yadav, S. et al. Dielectrically-modulated ganfet biosensor for label-free detection of DNA and avian influenza virus: proposal and modeling. ECS Journal of Solid State Science and Technology13(4), 047001 (2024).

    Google Scholar 

  • Yadav, S. et al. Nanoscale trench gate engineered jam gate-all-around (TGE-JAM-GAA) label-free BioFET for charged/neutral biomolecules detection. IETE J. Res.70(11), 8263–8277 (2024).

    Google Scholar 

  • Das, A. et al. Numerical modeling of a dielectric modulated surrounding-triple-gate germanium-source MOSFET (DM-STGGS-MOSFET)-based biosensor. J. Comput. Electron.22(2), 742–759 (2023).

    Google Scholar 

  • Das, A. et al. Ge/Si interfaced label free nanowire BIOFET for biomolecules detection-analytical analysis. Microelectron. J.138, 105832 (2023).

    Google Scholar 

  • Tomioka, K. et al. Control of InAs nanowire growth directions on Si. Nano Lett.8(10), 3475–3480 (2008).

    Google Scholar 

  • Mikhailova, M. P. Indium arsenide (InAs). Handbook series on semiconductor parameters1, 147 (1996).

    Google Scholar 

  • Anam, A. et al. Design and performance analysis of tunnel field effect transistor with buried strained Si 1–x Ge x source structure based biosensor for sensitivity enhancement. IEEE Sens. J.20(22), 13178–13185 (2020).

    Google Scholar 

  • Raut, P. et al. Analysis of dual material gate insb/si heterojunction silicon on insulator tunnel field effect transistor (DMG-HJ-SOI-TFET) biosensor for CREB-2 protein detection. Sensing and Imaging26(1), 1–21 (2025).

    Google Scholar 

  • Ghosh, R. et al. MoS\(_2\) based dual gate MOSFET as ultra-sensitive SARs-CoV-2 biosensor for rapid screening of respiratory syndrome. IEEE Sens. Lett. (2023).

  • Ghosh, R. et al. Study and analysis of the effects of trap assisted tunneling on the sensing performance of InAs/Si hetero juncture tfet based biosensor. Phys. Scr.99(9), 095008 (2024).

    Google Scholar 

  • Silvaco, I. Atlas users manual Vol. 5 (Santa Clara, CA, Ver, 2011).

  • Han, J.-P. et al. Asymmetric energy distribution of interface traps in N-and P-MOSFETs with HfO\(_2\) gate dielectric on ultrathin sion buffer layer. IEEE Electron Device Lett.25(3), 126–128 (2004).

    Google Scholar 

  • Moselund, K. E. et al. Lateral InAs/Si P-type tunnel FETs integrated on Si-part 1: experimental devices. IEEE Trans. Electron Dev.63(11), 4233–4239 (2016).

    Google Scholar 

  • Gedam, A. et al. Design of a double cavity nanotube tunnel field-effect transistor-based biosenser. ECS J. Solid State Sci. Technol.11(8), 081012 (2022).

    Google Scholar 

  • Ghosh, S. et al. Optimization of hetero-gate-dielectric tunnel FET for label-free detection and identification of biomolecules. IEEE Trans. Electron Devices67(5), 2157–2164 (2020).

    Google Scholar 

  • Ghosh, R. et al. Design and investigation of InAs source dual metal stacked gate-oxide heterostructure tunnel FET based label-free biosensor. Micro and Nanostructures174, 207444 (2023).

    Google Scholar 

  • Mukherjee, N. et al. InAs/Si based heterojunction TFET as improved in-situ breast cancer biomarker (C-erbB-2) detector, in 2025 Devices for Integrated Circuit (DevIC) 731–736 (IEEE, 2025).

    Google Scholar 

  • Chang, H.-Y. et al. Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans. Electron Devices60(1), 92–96 (2012).

    Google Scholar 

  • Bitra, J. et al. A comprehensive performance investigation on junction-less tfet (JL-TFET) based biosensor: Device structure and sensitivity. Trans. Electr. Electron. Mater.24(5), 365–372 (2023).

    Google Scholar 

  • Wangkheirakpam, V. D. et al. N+ pocket doped vertical TFET based dielectric-modulated biosensor considering non-ideal hybridization issue: A simulation study. IEEE Trans. Nanotechnol.19, 156–162 (2020).

    Google Scholar 

  • Deuling, H. et al. Interface states in Si-SiO\(_2\) interfaces. Solid-State Electron.15(5), 559–571 (1972).

    Google Scholar 

  • Grasser, T. Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelectron. Reliab.52(1), 39–70 (2012).

    Google Scholar 

  • Sattari-Esfahlan, S. M. et al. Stability and reliability of van der waals high-\(\kappa\) SrTiO\(_3\) field-effect transistors with small hysteresis. ACS Nano19(12), 12288–12297 (2025).

    Google Scholar 

  • Neves, F. S. et al. Study of hysteresis in vertical ge-source heterojunction tunnel-FETs at low temperature. ECS Trans.66(5), 179 (2015).

    Google Scholar 

  • Ahn, D.-H. et al. Energy-efficient III-V tunnel FET-based synaptic device with enhanced charge trapping ability utilizing both hot hole and hot electron injections for analog neuromorphic computing. ACS applied materials & interfaces14(21), 24592–24601 (2022).

    Google Scholar 

  • Thoan, N. et al. Interface state energy distribution and Pb defects at Si (110)/SiO\(_2\) interfaces: Comparison to (111) and (100) silicon orientations, Journal of Applied Physics, vol. 109(1) (2011).

  • Grasser, T. The capture/emission time map approach to the bias temperature instability. In Bias temperature instability for devices and circuits 447–481 (Springer, 2013).

    Google Scholar 

  • Rzepa, G. Efficient physical modeling of bias temperature instability. PhD thesis, Technische Universität Wien (2018).

  • Wu, C.-R. et al. Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sens. Actuators, B Chem.334, 129567 (2021).

    Google Scholar 

  • Kalra, S. et al. Reconfigurable FET biosensor for a wide detection range and electrostatically tunable sensing response. IEEE Sens. J.20(5), 2261–2269 (2019).

    Google Scholar 

  • Oldham, K. B. A gouy-chapman-stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem.613(2), 131–138 (2008).

    Google Scholar 

  • Das, A. et al. Physics based numerical model of a nanoscale dielectric modulated step graded germanium source biotube FET sensor: modelling and simulation. Phys. Scr.98(11), 115013 (2023).

    Google Scholar 

  • Bhardwaj, A. et al. Reliability analysis of dopingless vertical nanowire TFET with interface trap charges for ring-oscillator circuit implementation. Microelectron. Reliab.172, 115840 (2025).

    Google Scholar 

  • Bhardwaj, A. et al. Study of oxide material variation on electrical characteristics and linearity parameters induced in vertical nanowire TFET. Semiconductors59(5), 474–482 (2025).

    Google Scholar 

  • Bhardwaj, A. et al. Temperature induced analog performance modulation of high-vertical nanowire tunnel FET. Semiconductors59(4), 382–390 (2025).

    Google Scholar 

  • Kaushal, P. et al. Breast cancer detection using Si-doped MoS\(_2\) channel based thickness engineered TFET biosensor, IEEE Sensors Letters (2024).

  • Karmakar, P. et al. Performance assessment of a modified gate oxide TFET as a biosensor for breast cancer cell detection, Microsyst. Technol. 1–14 (2025).

  • Bind, M. K. et al. Design and investigation of the DM-PC-TFET-based biosensor for breast cancer cell detection. Trans. Electr. Electron. Mater.24(5), 381–395 (2023).

    Google Scholar 

  • Thakur, V. et al. Breast cancer detection using T-gated reconfigurable field effect transistor-based biosensor, in 2025 Devices for Integrated Circuit (DevIC) 358–362 (IEEE, 2025).

    Google Scholar 

  • Bhattacharyya, A. et al. Breast cancer cell lines recognition: Modeling and simulation with repulsive steric hindrance approach. IEEE Trans. Consumer Electron. (2024).

  • Bhattacharyya, A. et al. Reliability aspects in repulsive steric hindrance approach: Selectivity and sensitivity investigations. Micro Nanostruct.191, 207828 (2024).

    Google Scholar 

  • Swati, et al. Performance investigation of an InAs-based dielectric-modulated heterojunction TFET as a label-free biosensor. Appl. Phys. A129(5), 365 (2023).

    Google Scholar 

  • Continue Reading