A novel multidisciplinary approach for crude oil classification based on structural characteristics of asphaltenes

  • Asemani, M., Rabbani, A. R. & Sarafdokht, H. Evaluation of oil fingerprints similarity by a novel technique based on FTIR spectroscopy of asphaltenes: Modified moving window correlation coefficient technique. Mar Pet Geol 120, 104542 (2020).

    Google Scholar 

  • Behrenbruch, P. & Dedigama, T. Classification and characterisation of crude oils based on distillation properties. J Pet Sci Eng 57, 166–180 (2007).

    Google Scholar 

  • Barwise, A. J. G. Role of nickel and vanadium in petroleum classification. Energy & Fuels 4, 647–652 (1990).

    Google Scholar 

  • Asemani, M. & Rabbani, A. R. Oil-oil correlation by FTIR spectroscopy of asphaltene samples. Geosciences Journal 20, 273–283 (2016).

    Google Scholar 

  • Rabbani, A. R., Sadouni, J. & Asemani, M. Chemometric investigation of oil families and geochemical characterization of crude oils in the Northern Dezful Embayment Zone. SW Iran. J Pet Sci Eng 214, 110496 (2022).

    Google Scholar 

  • El-Gayar, M. S., Mostafa, A. R., Abdelfattah, A. E. & Barakat, A. O. Application of geochemical parameters for classification of crude oils from Egypt into source-related types. Fuel processing technology 79, 13–28 (2002).

    Google Scholar 

  • Asemani, M. & Rabbani, A. R. A novel and efficient chemometric approach to identifying oil families by saturate biomarker data and FTIR spectroscopy of asphaltene subfractions. Mar Pet Geol 124, 104838 (2021).

    Google Scholar 

  • Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. (Cambridge University Press, 2005).

  • Traxler, M. C. & others. 19. Composition of Chromatographic and Thermal Diffusion Fractions of Typical Asphalts. in 5th World Petroleum Congress (1959).

  • fu Yen, T. The charge-transfer nature of bitumens. Fuel 52, 93–98 (1973).

  • Riley, B. J., Lennard, C., Fuller, S. & Spikmans, V. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting. Forensic Sci Int 266, 555–564 (2016).

    Google Scholar 

  • Carvalho, V. V. et al. Revealing the chemical characterization of asphaltenes fractions produced by N-methylpyrrolidone using FTIR, molecular fluorescence, 1 H NMR, and ESI (±) FT-ICR MS. Fuel 210, 514–526 (2017).

    Google Scholar 

  • Sharma, B. K., Sharma, C. D., Tyagi, O. S., Bhagat, S. D. & Erhan, S. Z. Structural characterization of asphaltenes and ethyl acetate insoluble fractions of petroleum vacuum residues. Pet Sci Technol 25, 121–139 (2007).

    Google Scholar 

  • Mullins, O. C. The asphaltenes. Annual review of analytical chemistry 4, 393–418 (2011).

    Google Scholar 

  • Sharma, A. K. et al. Machine learning to identify structural motifs in asphaltenes. Results Chem 7, 101551 (2024).

    Google Scholar 

  • Rubinstein, I., Spyckerelle, C. & Strausz, O. P. Pyrolysis of asphaltenes: a source of geochemical information. Geochim Cosmochim Acta 43, 1–6 (1979).

    Google Scholar 

  • Behar, F. & Pelet, R. Characterization of asphaltenes by pyrolysis and chromatography. J Anal Appl Pyrolysis 7, 121–135 (1984).

    Google Scholar 

  • Lehne, E., Dieckmann, V., di Primio, R., Fuhrmann, A. & Horsfield, B. Changes in gas composition during simulated maturation of sulfur rich type II-S source rock and related petroleum asphaltenes. Org Geochem 40, 604–616 (2009).

    Google Scholar 

  • Lamontagne, J., Dumas, P., Mouillet, V. & Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80, 483–488 (2001).

    Google Scholar 

  • Permanyer, A., Douifi, L., Lahcini, A., Lamontagne, J. & Kister, J. FTIR and SUVF spectroscopy applied to reservoir compartmentalization: a comparative study with gas chromatography fingerprints results. Fuel 81, 861–866 (2002).

    Google Scholar 

  • Permanyer, A., Douifi, L., Dupuy, N., Lahcini, A. & Kister, J. FTIR and SUVF spectroscopy as an alternative method in reservoir studies. Application to Western Mediterranean oils. Fuel 84, 159–168 (2005).

    Google Scholar 

  • Permanyer, A., Rebufa, C. & Kister, J. Reservoir compartmentalization assessment by using FTIR spectroscopy. J Pet Sci Eng 58, 464–471 (2007).

    Google Scholar 

  • Márquez, G. et al. Intra-and inter-field compositional changes of oils from the Misoa B4 reservoir in the Ceuta Southeast Area (Lake Maracaibo, Venezuela). Fuel 167, 118–134 (2016).

    Google Scholar 

  • Asemani, M., Rabbani, A. R. & Sarafdokht, H. Origin, geochemical characteristics and filling pathways in the Shadegan oil field, Dezful Embayment, SW Iran. Journal of African Earth Sciences 174, 104047 (2021).

    Google Scholar 

  • Li, J., Chu, X., Tian, S. & Lu, W. The identification of highly similar crude oils by infrared spectroscopy combined with pattern recognition method. Spectrochim Acta A Mol Biomol Spectrosc 112, 457–462 (2013).

    Google Scholar 

  • Berberian, M. & King, G. C. P. Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18, 210–265 (1981).

    Google Scholar 

  • Stocklin, J. Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52, 1229–1258 (1968).

    Google Scholar 

  • Opera, A. et al. Burial history reconstruction and thermal maturity modeling for the Middle Cretaceous-Early Miocene Petroleum System, southern Dezful Embayment. SW Iran. Int J Coal Geol 120, 1–14 (2013).

    Google Scholar 

  • Sepehr, M. & Cosgrove, J. W. Structural framework of the Zagros fold–thrust belt. Iran. Mar Pet Geol 21, 829–843 (2004).

    Google Scholar 

  • Falcon, N. L. Major earth-flexuring in the Zagros Mountains of south-west Iran. Quarterly J. Geol. Soc. 117, 367–376 (1961).

    Google Scholar 

  • Colman-Sadd, S. P. Fold development in Zagros simply folded belt, Southwest Iran. Am Assoc Pet Geol Bull 62, 984–1003 (1978).

    Google Scholar 

  • Sherkati, S. & Letouzey, J. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment). Iran. Mar Pet Geol 21, 535–554 (2004).

    Google Scholar 

  • James, G. A. & Wynd, J. G. Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49, 2182–2245 (1965).

    Google Scholar 

  • Setudehnia, A. The mesozoic sequence in south-west Iran and adjacent areas. J. Pet. Geol. 1, 3–42 (1978).

    Google Scholar 

  • Motiei, H. Geology of Iran: stratigraphy of Zagros. Geological survey of Iran. 1, 536 (1993).

    Google Scholar 

  • Bordenave, M. L. & Hegre, J. A. (2010) Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geological Society, London, Special Publications; Edited by Leturmy, P. and Robin, C. 330, 291–353.

  • Bordenave, M. L. Petroleum systems and distribution of the oil and gas fields in the Iranian part of the Tethyan region. (2014).

  • Alipour, M. Basics of Petroleum Geochemistry. (Springer Nature Switzerland, Cham, 2025). https://doi.org/10.1007/978-3-031-86938-9.

  • Alipour, M. Petroleum systems of the Iranian Zagros Fold and Thrust Belt. Results in Earth Sciences 2, 100027 (2024).

    Google Scholar 

  • Bordenave, M. L. & Burwood, R. The Albian Kazhdumi Formation of the Dezful Embayment, Iran: one of the most efficient petroleum generating systems. in Petroleum Source Rocks 183–207 (In: Katz B.J. (ed) Petroleum Source Rocks. Casebooks in Earth Sciences. Springer, Berlin, Heidelberg, 1995).

  • Bordenave, M. L. & Burwood, R. Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Org Geochem 16, 369–387 (1990).

    Google Scholar 

  • Alipour, M., Alizadeh, B. & Mirzaie, S. Petroleum system analysis of the Paleozoic series in the Fars platform of Iran. J. Pet. Sci. Eng. 208, 109557 (2022).

    Google Scholar 

  • Gholami, Z., Alipour, M. & Ammari, A. Organofacies heterogeneity of the Aptian-Albian source rock (Kazhdumi Formation) in selected oilfields from the Zagros Basin. J. Stratigraphy Sedimentol. Res. 40, 63–74 (2024).

    Google Scholar 

  • Bordenave, M. L. & Huc, A. Y. The Cretaceous source rocks in the Zagros foothills of Iran. Revue de L’institut Français du Petrole 50, 727–752 (1995).

    Google Scholar 

  • Esrafili-Dizaji, B. & Rahimpour-Bonab, H. Carbonate reservoir rocks at giant oil and gas fields in SW Iran and the adjacent offshore: a review of stratigraphic occurrence and poro-perm characteristics. J. Pet. Geol. 42, 343–370 (2019).

    Google Scholar 

  • Kobraei, M., Sadouni, J. & Rabbani, A. R. Organic geochemical characteristics of Jurassic petroleum system in Abadan Plain and north Dezful zones of the Zagros basin, southwest Iran. J. Earth Sys. Sci. 128, 50 (2019).

    Google Scholar 

  • D6560, A. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. Annual Book of Standards (2017).

  • Asemani, M. & Rabbani, A. R. Crude oil fingerprint heterogeneity assessment by investigation of asphaltene subfractions: Implementation for reservoir continuity evaluation. J Pet Sci Eng 195, 107925 (2020).

    Google Scholar 

  • Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. (John Wiley & Sons, 2003).

  • Massart, D. L. et al. Handbook of chemometrics and qualimetrics: Part A. Appl Spectrosc 52, 302A (1998).

    Google Scholar 

  • Primerano, K., Mirwald, J. & Hofko, B. Asphaltenes and maltenes in crude oil and bitumen: A comprehensive review of properties, separation methods, and insights into structure, reactivity and aging. Fuel 368, 131616 (2024).

    Google Scholar 

  • Suri, N. N. R. M. R., Murty, M. N. & Athithan, G. Outlier Detection: Techniques and Applications. (Springer, 2019).

  • Asemani, M. & Rabbani, A. R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J Pet Sci Eng 185, 106618 (2020).

    Google Scholar 

  • Pavia, D. L., Lampman, G. M., Kriz, G. S. & Vyvyan, J. A. Introduction to Spectroscopy 4th edn. (Cengage Learning, 2008).

    Google Scholar 

  • Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach (CRC Press, 1998).

    Google Scholar 

  • Lin-Vien, D., Colthup, N. B., Fateley, W. G. & Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. (Elsevier, 1991).

  • Yen, T. F., Erdman, J. G. & Pollack, S. S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem 33, 1587–1594 (1961).

    Google Scholar 

  • Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A. H. & Husein, M. M. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. J Mol Liq 264, 410–424 (2018).

    Google Scholar 

  • Sadeghtabaghi, Z., Rabbani, A. R. & Hemmati-Sarapardeh, A. A review on asphaltenes characterization by X-ray diffraction: Fundamentals, challenges, and tips. J Mol Struct. 1238, 130425 (2021).

    Google Scholar 

  • Lewan, M. . Do. . Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta. 48, 2231–2238 (1984).

    Google Scholar 

  • Akinlua, A., Ajayi, T. R. & Adeleke, B. B. Organic and inorganic geochemistry of northwestern Niger Delta oils. Geochem J 41, 271–281 (2007).

    Google Scholar 

  • Akinlua, A., Sigedle, A., Buthelezi, T. & Fadipe, O. A. Trace element geochemistry of crude oils and condensates from South African Basins. Mar Pet Geol 59, 286–293 (2015).

    Google Scholar 

  • Duyck, C., Miekeley, N., da Silveira, C. L. P. & Szatmari, P. Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochim Acta Part B At Spectrosc 57, 1979–1990 (2002).

    Google Scholar 

  • Continue Reading