Chromatin accessibility of circulating CD8⁺ T cells differentiates disease severity in IgA nephropathy

  • Rodrigues, J. C., Haas, M. & Reich, H. N. IgA nephropathy. Clin. J. Am. Soc. Nephrol. 12(4), 677–86 (2017).

    Google Scholar 

  • Tomino, Y. Predictors of prognosis in IgA nephropathy. Kaohsiung J. Med Sci. 28(10), 517–20 (2012).

    Google Scholar 

  • Joo, Y. S. et al. External validation of the international prediction tool in Korean patients with immunoglobulin a nephropathy. Kidney Res. Clin. Pract. 41(5), 556–66 (2022).

    Google Scholar 

  • Yao, X. et al. MicroRNAs in IgA nephropathy. Ren Fail. 43(1), 1298–310 (2021).

    Google Scholar 

  • Zhang, Y., Yang, H., Jiang, M. & Nie, X. Exploring the pathogenesis and treatment of IgA nephropathy based on epigenetics. Epigenomics. 15(19), 1017–26 (2023).

    Google Scholar 

  • Shema, E., Bernstein, B. E. & Buenrostro, J. D. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet. 51(1), 19–25 (2019).

    Google Scholar 

  • Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13(9), 613–26 (2012).

    Google Scholar 

  • Ahmed, N. et al. Multi-omic analysis of longitudinal acute myeloid leukemia patient samples reveals potential prognostic markers linked to disease progression. Front. Genet. 15, 1442539 (2024).

    Google Scholar 

  • Araki, Y., Fann, M., Wersto, R. & Weng, N. P. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J. Immunol. 180(12), 8102–8 (2008).

    Google Scholar 

  • Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell. 183(4), 1103–16 (2020).

    Google Scholar 

  • Xie, S. et al. T cell responses in immune-mediated IgA nephropathy. J. Leukoc. Biol. 116(3), 523–35 (2024).

    Google Scholar 

  • Ruszkowski, J. et al. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin. Exp. Nephrol. 23(3), 291–303 (2019).

    Google Scholar 

  • Pei, G. et al. Renal interstitial infiltration and tertiary lymphoid organ neogenesis in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 9(2), 255–64 (2014).

    Google Scholar 

  • Zheng, Y. et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy. Cell Rep. 33(12), 108525 (2020).

    Google Scholar 

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods. 14(10), 959–62 (2017).

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9(4), 357–9 (2012).

    Google Scholar 

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26(6), 841–2 (2010).

    Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9), R137 (2008).

    Google Scholar 

  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 489(7414), 57–74 (2012).

    Google Scholar 

  • Shin, H. M. et al. Chromatin accessibility of circulating CD8(+) T cells predicts treatment response to PD-1 blockade in patients with gastric cancer. Nat. Commun. 12(1), 975 (2021).

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1), 139–40 (2010).

    Google Scholar 

  • Budczies, J. et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 7(12), e51862 (2012).

    Google Scholar 

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 38(4), 576–89 (2010).

    Google Scholar 

  • Ivanek OBaR. seqLogo: Sequence logos for DNA sequence alignments. (2023).

  • Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 30(4), 523–30 (2014).

    Google Scholar 

  • Yi, M., Nissley, D. V., McCormick, F. & Stephens, R. M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep. 10(1), 10258 (2020).

    Google Scholar 

  • Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192(5), 2143–55 (2014).

    Google Scholar 

  • Mizutani, S. et al. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br. J. Haematol. 170(6), 859–73 (2015).

    Google Scholar 

  • Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 37(6), 1130–44 (2012).

    Google Scholar 

  • Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 338(6111), 1220–5 (2012).

    Google Scholar 

  • Man, K. et al. Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity. 47(6), 1129–41 (2017).

    Google Scholar 

  • Chandele, A. et al. Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. J. Immunol. 180(8), 5309–19 (2008).

    Google Scholar 

  • Simundic, A.-M. Diagnostic accuracy—part 1: basic concepts: sensitivity and specificity, ROC analysis STARD statement. Point Care. 11(1), 6–8 (2012).

    Google Scholar 

  • Deng, Q. et al. The emerging epigenetic role of CD8+T cells in autoimmune diseases: a systematic review. Front. Immunol. 10, 856 (2019).

    Google Scholar 

  • Uchimura, K. et al. The effects of CD40- and interleukin (IL-4)-activated CD23+ cells on the production of IL-10 by mononuclear cells in Graves’ disease: the role of CD8+ cells. Clin. Exp. Immunol. 128(2), 308–12 (2002).

    Google Scholar 

  • Xing, L. et al. CD8+HLA-DR+ T cells are increased in patients with severe aplastic anemia. Mol. Med. Rep. 10(3), 1252–8 (2014).

    Google Scholar 

  • Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 52(1), 201–11 (2005).

    Google Scholar 

  • Jung, S. & Baek, J. H. The potential of T cell factor 1 in sustaining CD8(+) T lymphocyte-directed anti-tumor immunity. Cancers (Basel). 13(3), 515 (2021).

    Google Scholar 

  • Grenningloh, R. et al. Ets-1 maintains IL-7 receptor expression in peripheral T cells. J. Immunol. 186(2), 969–76 (2011).

    Google Scholar 

  • Continue Reading