Breslow, R. Artificial enzymes. Science 218, 532–537 (1982).
Google Scholar
DeGrado, W. F., Wasserman, Z. R. & Lear, J. D. Protein design, a minimalist approach. Science 243, 622–628 (1989).
Google Scholar
Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).
Google Scholar
Castriciano, M. A., Romeo, A., Baratto, M. C., Pogni, R. & Scolaro, L. M. Supramolecular mimetic peroxidase based on hemin and PAMAM dendrimers. Chem. Commun. 14, 688–690 (2008).
Google Scholar
Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).
Google Scholar
Terashima, T. et al. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).
Google Scholar
Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).
Google Scholar
Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).
Google Scholar
Nath, I., Chakraborty, J. & Verpoort, F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016).
Google Scholar
Liu, Q., Wang, H., Shi, X. H., Wang, Z.-G. & Ding, B. Q. Self-assembled DNA/peptide-based nanoparticle exhibiting synergistic enzymatic activity. ACS Nano 11, 7251–7258 (2017).
Google Scholar
Mundsinger, K., Izuagbe, A., Tuten, B. T., Roesky, P. W. & Barner-Kowollik, C. Single chain nanoparticles in catalysis. Angew. Chem. Int. Ed. 63, e202311734 (2024).
Google Scholar
Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).
Google Scholar
Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).
Google Scholar
Rose, G. D., Fleming, P. J., Banavar, J. R. & Maritan, A. A backbone-based theory of protein folding. Proc. Natl Acad. Sci. USA 103, 16623–16633 (2006).
Google Scholar
Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).
Google Scholar
Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).
Google Scholar
Magazù, S. et al. Protein dynamics as seen by (quasi) elastic neutron scattering. Biochim. Biophys. Acta Gen. Subj. 1861, 3504–3512 (2017).
Google Scholar
Robertson, D. E. et al. Design and synthesis of multi-haem proteins. Nature 368, 425–432 (1994).
Google Scholar
Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).
Google Scholar
Hilburg, S. L., Ruan, Z., Xu, T. & Alexander-Katz, A. Behavior of protein-inspired synthetic random heteropolymers. Macromolecules 53, 9187–9199 (2020).
Google Scholar
Jiang, T. et al. Single-chain heteropolymers transport protons selectively and rapidly. Nature 577, 216–220 (2020).
Google Scholar
Daghrir, R. & Drogui, P. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227 (2013).
Google Scholar
Dill, K. A. et al. Principles of protein folding — a perspective from simple exact models. Protein Sci. 4, 561–602 (1995).
Google Scholar
Ruan, Z. et al. Population-based heteropolymer design to mimic protein mixtures. Nature 615, 251–258 (2023).
Google Scholar
Artar, M., Souren, E. R. J., Terashima, T., Meijer, E. W. & Palmans, A. R. A. Single chain polymeric nanoparticles as selective hydrophobic reaction spaces in water. ACS Macro Lett. 4, 1099–1103 (2015).
Google Scholar
Hoshino, Y. et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl Acad. Sci. USA 109, 33–38 (2012).
Google Scholar
Popot, J.-L. et al. Amphipols from A to Z. Annu. Rev. Biophys. 40, 379–408 (2011).
Google Scholar
Chakraborty, A. K. & Shakhnovich, E. I. Phase behavior of random copolymers in quenched random media. J. Chem. Phys. 103, 10751–10763 (1995).
Google Scholar
Geissler, P. L. & Shakhnovich, E. I. Mechanical response of random heteropolymers. Macromolecules 35, 4429–4436 (2002).
Google Scholar
Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).
Google Scholar
Koshland, D. E. Jr The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 33, 2375–2378 (1995).
Google Scholar
Jayapurna, I. et al. Sequence design of random heteropolymers as protein mimics. Biomacromolecules 24, 652–660 (2023).
Google Scholar
Hoshino, T. & Sato, T. Squalene–hopene cyclase: catalytic mechanism and substrate recognition. Chem. Commun. 4, 291–301 (2002).
Google Scholar
Moffet, D. A. et al. Peroxidase activity in heme proteins derived from a designed combinatorial library. J. Am. Chem. Soc. 122, 7612–7613 (2000).
Google Scholar
Walker, F. A. Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. Chem. Rev. 104, 589–616 (2004).
Google Scholar
Tronnet, A. et al. Star-like polypeptides as simplified analogues of horseradish peroxidase (HRP) metalloenzymes. Macromol. Biosci. 24, 2400155–2400155 (2024).
Google Scholar
Yu, H. et al. Mapping composition evolution through synthesis, purification, and depolymerization of random heteropolymers. J. Am. Chem. Soc. 146, 6178–6188 (2024).
Google Scholar
Arbe, A., Colmenero, J., Monkenbusch, M. & Richter, D. Dynamics of glass-forming polymers: “homogeneous” versus “heterogeneous” scenario. Phys. Rev. Lett. 81, 590–593 (1998).
Google Scholar
Hart-Cooper, W. M., Clary, K. N., Toste, F. D., Bergman, R. G. & Raymond, K. N. Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012).
Google Scholar
Hammer, S. C., Marjanovic, A., Dominicus, J. M., Nestl, B. M. & Hauer, B. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11, 121–126 (2015).
Google Scholar
Gibney, B. R. & Dutton, P. L. Histidine placement in de novo–designed heme proteins. Protein Sci. 8, 1888–1898 (1999).
Google Scholar
Walker, F. A., Reis, D. & Balke, V. L. Models of the cytochromes b. 5. EPR studies of low-spin iron(III) tetraphenylporphyrins. J. Am. Chem. Soc. 106, 6888–6898 (1984).
Google Scholar
Murphy, E. A. et al. High-throughput generation of block copolymer libraries via click chemistry and automated chromatography. Macromolecules 58, 8369–8376 (2025).
Google Scholar
Cochran, A. G. & Schultz, P. G. Peroxidase-activity of an antibody heme complex. J. Am. Chem. Soc. 112, 9414–9415 (1990).
Google Scholar
Tracy, T. S. Atypical cytochrome P450 kinetics. Drugs R D 7, 349–363 (2006).
Google Scholar
Wu, G.-R. et al. Efficient degradation of tetracycline antibiotics by engineered myoglobin with high peroxidase activity. Molecules 27, 8660 (2022).
Google Scholar
Jaacks, V. A novel method of determination of reactivity ratios in binary and ternary copolymerizations. Makromolek. Chem. 161, 161–172 (1972).
Google Scholar
Flynn, P. F., Mattiello, D. L., Hill, H. D. W. & Wand, A. J. Optimal use of cryogenic probe technology in NMR studies of proteins. J. Am. Chem. Soc. 122, 4823–4824 (2000).
Google Scholar
Andreini, C., Cavallaro, G., Lorenzini, S. & Rosato, A. MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 41, D312–D319 (2013).
Google Scholar
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Google Scholar
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Google Scholar
Shu, J. Y. et al. Amphiphilic peptide−polymer conjugates based on the coiled-coil helix bundle. Biomacromolecules 11, 1443–1452 (2010).
Google Scholar
