The modern hacker and maker has an incredible array of tools at their disposal — even a modestly appointed workbench these days would have seemed like science-fiction a couple decades ago. Desktop 3D printers, laser cutters, CNC mills, lathes, the list goes on and on. But what good is all that fancy gear if you don’t put it to work once and awhile?
If we had to guess, we’d say dust never gets a chance to accumulate on any of the tools in [Ed Nisley]’s workshop. According to his blog, the prolific hacker is either building or repairing something on a nearly basis. All of his posts are worth reading, but the multifaceted rebuilding of a Anker LC-40 flashlight from a couple months back recently caught our eye.
The problem was simple enough: the button on the back of the light went from working intermittently to failing completely. [Ed] figured there must be a drop in replacement out there, but couldn’t seem to find one in his online searches. So he took to the parts bin and found a surface-mount button that was nearly the right size. At the time, it seemed like all he had to do was print out a new flexible cover for the button out of TPU, but getting the material to cooperate took him down an unexpected rabbit hole of settings and temperatures.
With the cover finally printed, there was a new problem. It seemed that the retaining ring that held in the button PCB was damaged during disassembly, so [Ed] ended up having to design and print a new one. Unfortunately, the 0.75 mm pitch threads on the retaining ring were just a bit too small to reasonably do with an FDM printer, so he left the sides solid and took the print over to the lathe to finish it off.
Of course, the tiny printed ring was too small and fragile to put into the chuck of the lathe, so [Ed] had to design and print a fixture to hold it. Oh, and since the lathe was only designed to cut threads in inches, he had to make a new gear to convert it over to millimeters. But at least that was a project he completed previously.
With the fine threads cut into the printed retaining ring ready to hold in the replacement button and its printed cover, you might think the flashlight was about to be fixed. But alas, it was not to be. It seems the original button had a physical stabilizer on it to keep it from wobbling around, which wouldn’t fit now that the button had been changed. [Ed] could have printed a new part here as well, but to keep things interesting, he turned to the laser cutter and produced a replacement from a bit of scrap acrylic.
In the end, the flashlight was back in fighting form, and the story would seem to be at an end. Except for the fact that [Ed] eventually did find the proper replacement button online. So a few days later he ended up taking the flashlight apart, tossing the custom parts he made, and reassembling it with the originals.
Some might look at this whole process and see a waste of time, but we prefer to look at it as a training exercise. After all, the experienced gained is more valuable than keeping a single flashlight out of the dump. That said, should the flashlight ever take a dive in the future, we’re confident [Ed] will know how to fix it. Even better, now we do as well.