Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484. https://doi.org/10.1021/jf200439q (2011).
Google Scholar
Morillo, M. et al. Natural and synthetic derivatives of the steroidal glycoalkaloids of Solanum genus and biological activity. Nat. Prod. Res. 8, 371. https://doi.org/10.35248/231229-6836.20.8.371 (2020).
Google Scholar
Delbrouck, J. A. et al. The therapeutic value of Solanum steroidal (glyco)alkaloids: a 10-year comprehensive review. Molecules 28, 4957. https://doi.org/10.3390/molecules28134957 (2023).
Google Scholar
Bueno da Silva, M., Wiese-Klinkenberg, A., Usadel, B. & Genzel, F. Potato berries as a valuable source of compounds potentially applicable in crop protection and pharmaceutical sectors: a review. J. Agric. Food Chem. 72, 15449–15462. https://doi.org/10.1021/acs.jafc.4c03071 (2024).
Google Scholar
Coxon, D. T. The glycoalkaloid content of potato berries. J. Sci. Food Agric. 32, 412–414. https://doi.org/10.1002/jsfa.2740320416 (1981).
Google Scholar
Friedman, M. & Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 40, 419–423. https://doi.org/10.1021/jf00015a011 (1992).
Google Scholar
Mensinga, T. T. et al. Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regul. Toxicol. Pharmacol. 41, 66–72. https://doi.org/10.1016/j.yrtph.2004.09.004 (2005).
Google Scholar
Ginzberg, I., Tokuhisa, J. G. & Veilleux, R. E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res. 52, 1–15. https://doi.org/10.1007/s11540-008-9103-4 (2009).
Google Scholar
Khanal, S. et al. Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives. Biomass Convers. Biorefin. 14, 23335–23360. https://doi.org/10.1007/s13399-023-04521-1 (2023).
Google Scholar
Friedman, M. & McDonald, G. M. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. CRC Crit. Rev. Plant. Sci. 16, 55–132. https://doi.org/10.1080/713608144 (1997).
Google Scholar
Percival, G. C., Dixon, G. R. & Glycoalkaloids In Handbook of Plant and Fungal Toxicants19–35 (CRC, 2020). https://doi.org/10.1201/9780429281952-2.
Rayburn, J. R., Bantlej, J. A. & Friedman, M. Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 42, 1511–1515. https://doi.org/10.1021/jf00043a022 (1994).
Google Scholar
Roddick, J. G., Rijnenberg, A. L. & Weissenberg, M. Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29, 1513–1518. https://doi.org/10.1016/0031-9422(90)80111-s (1990).
Google Scholar
Friedman, M., Rayburn, J. R. & Bantle, J. A. Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay—Xenopus (FETAX). Food Chem. Toxicol. 29, 537–547. https://doi.org/10.1016/0278-6915(91)90046-a (1991).
Google Scholar
Blankemeyer, J. T., Mcwilliams, M. L., Rayburn, J. R., Weissenberg, M. & Friedman, M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem. Toxicol. 36, 383–389. https://doi.org/10.1016/s0278-6915(97)00164-6 (1998).
Google Scholar
Keukens, E. A. J. et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Et Biophys. Acta (BBA) – Biomembr. 1240, 216–228. https://doi.org/10.1016/0005-2736(95)00186-7 (1995).
Google Scholar
Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034 (2018).
Google Scholar
Wolters, P. J. et al. Tetraose steroidal glycoalkaloids from potato provide resistance against Alternaria Solani and Colorado potato beetle. Elife 12, 1–24. https://doi.org/10.7554/eLife.87135 (2023).
Google Scholar
Baur, S. et al. Steroidal Saponinsnew sources to develop potato (Solanum tuberosum L.) genotypes resistant against certain Phytophthora infestans strains. J. Agric. Food Chem. 70, 7447–7459. https://doi.org/10.1021/acs.jafc.2c02575 (2022).
Google Scholar
Fewell, A. M. & Roddick, J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101, 597–603. https://doi.org/10.1017/s0953756296002973 (1997).
Google Scholar
Udalova, Z. V., Zinov’eva, S. V., Vasil’eva, I. S. & Paseshnickenko, V. A. Interaction between structure of plant steroids and their effect on phytonematodes. Appl. Biochem. Microbiol. 40, 109–113. https://doi.org/10.1023/B:ABIM.0000010362.79928.77 (2004).
Google Scholar
Desmedt, W., Mangelinckx, S., Kyndt, T. & Vanholme, B. A phytochemical perspective on plant defense against nematodes. Front. Plant. Sci. 11, 602079. https://doi.org/10.3389/fpls.2020.602079 (2020).
Google Scholar
Sinden, S. L., Sanford, L. L. & Osman, S. F. Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense bitter. Am. Potato J. 57, 331–343. https://doi.org/10.1007/bf02854028 (1980).
Google Scholar
Tai, H. H., Worrall, K., Pelletier, Y., De Koeyer, D. & Calhoun, L. A. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. J. Agric. Food Chem. 62, 9043–9055. https://doi.org/10.1021/jf502508y (2014).
Google Scholar
Shavanov, M. V., Shigapov, I. I. & Niaz, A. Biological methods for pests and diseases control in agricultural plants. In AIP Conf. Proc. 2390, 030081. https://doi.org/10.1063/5.0070487 (2022).
Abdullah, H. M. et al. Present and future scopes and challenges of plant pest and disease (P&D) monitoring: remote sensing, image processing, and artificial intelligence perspectives. Remote Sens. Appl. 32, 100996. https://doi.org/10.1016/j.rsase.2023.100996 (2023).
Google Scholar
Daub, M. The beet cyst nematode (Heterodera schachtii): an ancient threat to sugar beet crops in central Europe has become an invisible actor. In Integrated Nematode Management: state-of-the-art and Visions for the Future 394–399 (CABI, UK, https://doi.org/10.1079/9781789247541.0055 (2021).
Google Scholar
Phani, V., Khan, M. R. & Dutta, T. K. Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Prot. 144, 1005573. https://doi.org/10.1016/j.cropro.2021.105573 (2021).
Google Scholar
Daraban, G. M., Hlihor, R. M. & Suteu, D. Pesticides vs. biopesticides: from pest management to toxicity and impacts on the environment and human health. Toxics 11, 983. https://doi.org/10.3390/toxics11120983 (2023).
Google Scholar
Khursheed, A. et al. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854 (2022).
Google Scholar
Jyotsna, B. et al. Essential oils from plant resources as potent insecticides and repellents: current status and future perspectives. Biocatal. Agric. Biotechnol. 61, 103395. https://doi.org/10.1016/j.bcab.2024.103395 (2024).
Google Scholar
Burtscher-Schaden, H., Durstberger, T. & Zaller, J. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 10, 753. https://doi.org/10.3390/toxics10120753 (2022).
Arnason, J. T., Sims, S. R. & Scott, I. M. Natural products from plants as insecticides. Phytochemistry and pharmacognosy in Encyclopedia of Life Support Systems (EOLSS), Developed Under the Auspices of the UNESCO, Eolss, Paris, France. (2012).
Stevenson, P. C., Isman, M. B. & Belmain, S. R. Pesticidal plants in africa: a global vision of new biological control products from local uses. Ind. Crops Prod. 110, 2–9. https://doi.org/10.1016/j.indcrop.2017.08.034 (2017).
Google Scholar
Oguh, C. E. et al. Natural pesticides (biopesticides) and uses in pest management – a critical review. Asian J. Biotech. Gen. Eng. 2, 1–18 (2019).
Siegwart, M. et al. Resistance to bio-insecticides or how to enhance their sustainability: a review. Front. Plant. Sci. 6, 381. https://doi.org/10.3389/fpls.2015.00381 (2015).
Google Scholar
Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521. https://doi.org/10.1038/nbt.2597 (2013).
Google Scholar
Copping, L. G. & Duke, S. O. Natural products that have been used commercially as crop protection agents. Pest Manag Sci. 63, 524–554. https://doi.org/10.1002/ps.1378 (2007).
Google Scholar
Lengai, G. M. W., Muthomi, J. W. & Mbega, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239 (2020).
Google Scholar
Šunjka, D. & Mechora, Š. An alternative source of biopesticides and improvement in their Formulation—Recent advances. Plants 11, 3172. https://doi.org/10.3390/plants11223172 (2022).
Google Scholar
U.S. Environmental Protection Agency. Biopesticides: classes & definitions. (2025). Available at: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides.
U.S. Environmental Protection Agency. Pesticide registration improvement extension Act (PRIA-5) fee schedules. (2025). Available at: https://www.epa.gov/pria-fees.
European Food Safety Authority. Pesticides: regulations and guidance. (2025). Available at: https://www.efsa.europa.eu/en/topics/topic/pesticides.
European Commision. Regulation (EU) 2022/1439 amending Regulation (EC) No 283/2013 on data requirements for active substances (microorganisms). (2022). Available at: https://eur-lex.europa.eu/eli/reg/2022/1439/oj/eng.
European Commission. Explanatory notes on the implementation of data requirements for microbial active substances. (2023). Available at: https://food.ec.europa.eu/system/files/2023-10/pesticides_ppp_app-proc_guide_imp-data-req_micro-organisms-ppp_imp-reg-11072009.pdf.
López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F. & Sánchez-Moreiras, A. M. A natural Indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis Thaliana. Plant. Physiol. Biochem. 151, 378–390. https://doi.org/10.1016/j.plaphy.2020.03.047 (2020).
Google Scholar
Sołtys-Kalina, D., Strzelczyk-Żyta, D. M. Z., Wasilewicz-Flis, D., Marczewski, W. & I. & Phytotoxic potential of cultivated and wild potato species (Solanum sp.): role of glycoalkaloids, phenolics and flavonoids in phytotoxicity against mustard (Sinapis Alba L). Acta Physiol. Plant. 41, 55. https://doi.org/10.1007/s11738-019-2848-3 (2019).
Google Scholar
Sun, F. et al. Effects of glycoalkaloids from Solanum plants on cucumber root growth. Phytochemistry 71, 1534–1538. https://doi.org/10.1016/j.phytochem.2010.06.002 (2010).
Google Scholar
Sivasankara Pillai, S. & Dandurand, L. M. Effect of steroidal glycoalkaloids on hatch and reproduction of the potato cyst nematode Globodera pallida. Plant. Dis. 105, 2975–2980. https://doi.org/10.1094/pdis-02-21-0247-re (2021).
Google Scholar
Sánchez-Maldonado, A. F., Schieber, A. & Gänzle, M. G. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): glycoalkaloids and phenolic acids show synergistic effects. J. Appl. Microbiol. 120, 955–965. https://doi.org/10.1111/jam.13056 (2016).
Google Scholar
Bredenbruch, S. et al. The biological activity of bacterial rhamnolipids on Arabidopsis Thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. Pestic Biochem. Physiol. 204, 106103. https://doi.org/10.1016/j.pestbp.2024.106103 (2024).
Google Scholar
Wi, S. J., Ji, N. R. & Park, K. Y. Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant. Physiol. 159, 251–265. https://doi.org/10.1104/pp.112.194654 (2012).
Google Scholar
Singh, D. et al. Secondary Metabolite Engineering for Plant Immunity Against Various Pathogens. In Metabolic Engineering in Plants 123–143 (Springer Nature Singapore, Singapore, 2022). https://doi.org/10.1007/978-981-16-7262-0_5.
Wewer, V., Dombrink, I., Vom Dorp, K. & Dörmann, P. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J. Lipid Res. 52, 1039–1054. https://doi.org/10.1194/jlr.d013987 (2011).
Google Scholar
Zhou, F. et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440–453. https://doi.org/10.1016/j.cell.2020.01.013 (2020).
Google Scholar
Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500. https://doi.org/10.1038/nature05999 (2007).
Google Scholar
Nietzschmann, L. et al. Early Pep-13-induced immune responses are SERK3A/B-dependent in potato. Sci. Rep. 9, 18380. https://doi.org/10.1038/s41598-019-54944-y (2019).
Google Scholar
Kammerhofer, N. et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New. Phytol. 207, 778–789. https://doi.org/10.1111/nph.13395 (2015).
Google Scholar
Willig, J. J. et al. From root to shoot: quantifying nematode tolerance in Arabidopsis thaliana by high-throughput phenotyping of plant development. J. Exp. Bot. 74, 5487–5499. https://doi.org/10.1101/2023.03.15.532731 (2023).
Google Scholar
Li, H., Li, M., Fan, Y., Liu, Y. & Qin, S. Antifungal activity of potato glycoalkaloids and its potential to control severity of dry rot caused by Fusarium sulphureum. Crop Sci. 63, 801–811. https://doi.org/10.1002/csc2.20874 (2023).
Google Scholar
Pane, C. et al. Managing rhizoctonia damping-off of rocket (Eruca sativa) seedlings by drench application of bioactive potato leaf phytochemical extracts. Biology 9, 1–18. https://doi.org/10.3390/biology9090270 (2020).
Google Scholar
Pacifico, D. et al. Sustainable use of bioactive compounds from Solanum tuberosum and brassicaceae wastes and by-products for crop protection—a review. Molecules 26 https://doi.org/10.3390/molecules26082174 (2021).
McKee, R. K. Affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. J. Gen. Microbiol. 20 https://doi.org/10.1099/00221287-20-3-686 (1959).
Hennessy, R. C. et al. Discovery of a bacterial gene cluster for deglycosylation of toxic potato steroidal glycoalkaloids α-chaconine and α-solanine. J. Agric. Food Chem. 68, 1390–1396. https://doi.org/10.1021/acs.jafc.9b07632 (2020).
Google Scholar
Wang, Y., Strelkov, S. E. & Hwang, S. F. Yield losses in Canola in response to Blackleg disease. Can. J. Plant. Sci. 100, 488–494. https://doi.org/10.1139/cjps-2019-0259 (2020).
Google Scholar
Gaulin, E., Bottin, A. & Dumas, B. Sterol biosynthesis in oomycete pathogens. Plant. Signal. Behav. 5, 258–260. https://doi.org/10.4161/psb.5.3.10551 (2010).
Google Scholar
Lelario, F. et al. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chem. Biol. Techn Agric. 5, 13. https://doi.org/10.1186/s40538-018-0125-0 (2018).
Google Scholar
Tajkarimi, M. M., Ibrahim, S. A. & Cliver, D. O. Antimicrobial herb and spice compounds in food. Food Control. 21, 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003 (2010).
Google Scholar
Sasso, S., Scrano, L., Bonomo, M. G., Salzano, G. & Bufo, S. Secondary metabolites: applications on cultural heritage. Comm Appl. Biol. Sci 78, (2013).
Calabrese, E. J. Hormesis mediates acquired resilience: using plant-derived chemicals to enhance health. Annu. Rev. Food Sci. Technol. 12, 355–381. https://doi.org/10.1146/annurev-food-062420-124437 (2021).
Google Scholar
Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 3, 13. https://doi.org/10.1038/s41514-017-0013-z (2017).
Google Scholar
Song, F. et al. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biol. Technol. 196, 112176. https://doi.org/10.1016/j.postharvbio.2022.112176 (2023).
Google Scholar
Friedman, M., Roitman, J. N. & Kozukue, N. Glycoalkaloid and Calystegine contents of eight potato cultivars. J. Agric. Food Chem. 51, 2964–2973. https://doi.org/10.1021/jf021146f (2003).
Google Scholar
Pęksa, A. et al. Assessment of the content of glycoalkaloids in potato snacks made from colored potatoes, resulting from the action of organic acids and thermal processing. Foods 13, 1712. https://doi.org/10.3390/foods13111712 (2024).
Google Scholar
Sijmons, P. C., Grundler, F. M. W., von Mende, N., Burrows, P. R. & Wyss, U. Arabidopsis Thaliana as a new model host for plant-parasitic nematodes. Plant. J. 1, 245–254. https://doi.org/10.1111/j.1365-313x.1991.00245.x (1991).
Google Scholar
Matera, C., Grundler, F. M. & Schleker, A. S. S. Sublethal Fluazaindolizine doses inhibit development of the cyst nematode (Heterodera schachtii) during sedentary parasitism. Pest Manag Sci. 77, 3571–3580. https://doi.org/10.1002/ps.6411 (2021).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
Google Scholar
Origin (Pro). Version 2020. OriginLab Corporation. (2020).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/
Weil, H. L. et al. PLANTdataHUB: a collaborative platform for continuous FAIR data sharing in plant research. Plant J. 116, 974–988. https://doi.org/10.1111/tpj.16474 (2023).
Google Scholar