In vitro effects of potato glycoalkaloids on plant-pathogens, beneficial microbes, and Arabidopsis thaliana

  • Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484. https://doi.org/10.1021/jf200439q (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morillo, M. et al. Natural and synthetic derivatives of the steroidal glycoalkaloids of Solanum genus and biological activity. Nat. Prod. Res. 8, 371. https://doi.org/10.35248/231229-6836.20.8.371 (2020).

    Article 

    Google Scholar 

  • Delbrouck, J. A. et al. The therapeutic value of Solanum steroidal (glyco)alkaloids: a 10-year comprehensive review. Molecules 28, 4957. https://doi.org/10.3390/molecules28134957 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bueno da Silva, M., Wiese-Klinkenberg, A., Usadel, B. & Genzel, F. Potato berries as a valuable source of compounds potentially applicable in crop protection and pharmaceutical sectors: a review. J. Agric. Food Chem. 72, 15449–15462. https://doi.org/10.1021/acs.jafc.4c03071 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coxon, D. T. The glycoalkaloid content of potato berries. J. Sci. Food Agric. 32, 412–414. https://doi.org/10.1002/jsfa.2740320416 (1981).

    Article 
    CAS 

    Google Scholar 

  • Friedman, M. & Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 40, 419–423. https://doi.org/10.1021/jf00015a011 (1992).

    Article 
    CAS 

    Google Scholar 

  • Mensinga, T. T. et al. Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regul. Toxicol. Pharmacol. 41, 66–72. https://doi.org/10.1016/j.yrtph.2004.09.004 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ginzberg, I., Tokuhisa, J. G. & Veilleux, R. E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res. 52, 1–15. https://doi.org/10.1007/s11540-008-9103-4 (2009).

    Article 
    CAS 

    Google Scholar 

  • Khanal, S. et al. Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives. Biomass Convers. Biorefin. 14, 23335–23360. https://doi.org/10.1007/s13399-023-04521-1 (2023).

    Article 
    CAS 

    Google Scholar 

  • Friedman, M. & McDonald, G. M. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. CRC Crit. Rev. Plant. Sci. 16, 55–132. https://doi.org/10.1080/713608144 (1997).

    Article 
    CAS 

    Google Scholar 

  • Percival, G. C., Dixon, G. R. & Glycoalkaloids In Handbook of Plant and Fungal Toxicants19–35 (CRC, 2020). https://doi.org/10.1201/9780429281952-2.

  • Rayburn, J. R., Bantlej, J. A. & Friedman, M. Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 42, 1511–1515. https://doi.org/10.1021/jf00043a022 (1994).

    Article 
    CAS 

    Google Scholar 

  • Roddick, J. G., Rijnenberg, A. L. & Weissenberg, M. Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29, 1513–1518. https://doi.org/10.1016/0031-9422(90)80111-s (1990).

    Article 
    CAS 

    Google Scholar 

  • Friedman, M., Rayburn, J. R. & Bantle, J. A. Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay—Xenopus (FETAX). Food Chem. Toxicol. 29, 537–547. https://doi.org/10.1016/0278-6915(91)90046-a (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blankemeyer, J. T., Mcwilliams, M. L., Rayburn, J. R., Weissenberg, M. & Friedman, M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem. Toxicol. 36, 383–389. https://doi.org/10.1016/s0278-6915(97)00164-6 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keukens, E. A. J. et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Et Biophys. Acta (BBA) – Biomembr. 1240, 216–228. https://doi.org/10.1016/0005-2736(95)00186-7 (1995).

    Article 

    Google Scholar 

  • Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolters, P. J. et al. Tetraose steroidal glycoalkaloids from potato provide resistance against Alternaria Solani and Colorado potato beetle. Elife 12, 1–24. https://doi.org/10.7554/eLife.87135 (2023).

    Article 

    Google Scholar 

  • Baur, S. et al. Steroidal Saponinsnew sources to develop potato (Solanum tuberosum L.) genotypes resistant against certain Phytophthora infestans strains. J. Agric. Food Chem. 70, 7447–7459. https://doi.org/10.1021/acs.jafc.2c02575 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fewell, A. M. & Roddick, J. G. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101, 597–603. https://doi.org/10.1017/s0953756296002973 (1997).

    Article 
    CAS 

    Google Scholar 

  • Udalova, Z. V., Zinov’eva, S. V., Vasil’eva, I. S. & Paseshnickenko, V. A. Interaction between structure of plant steroids and their effect on phytonematodes. Appl. Biochem. Microbiol. 40, 109–113. https://doi.org/10.1023/B:ABIM.0000010362.79928.77 (2004).

    Article 

    Google Scholar 

  • Desmedt, W., Mangelinckx, S., Kyndt, T. & Vanholme, B. A phytochemical perspective on plant defense against nematodes. Front. Plant. Sci. 11, 602079. https://doi.org/10.3389/fpls.2020.602079 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinden, S. L., Sanford, L. L. & Osman, S. F. Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense bitter. Am. Potato J. 57, 331–343. https://doi.org/10.1007/bf02854028 (1980).

    Article 
    CAS 

    Google Scholar 

  • Tai, H. H., Worrall, K., Pelletier, Y., De Koeyer, D. & Calhoun, L. A. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. J. Agric. Food Chem. 62, 9043–9055. https://doi.org/10.1021/jf502508y (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shavanov, M. V., Shigapov, I. I. & Niaz, A. Biological methods for pests and diseases control in agricultural plants. In AIP Conf. Proc. 2390, 030081. https://doi.org/10.1063/5.0070487 (2022).

  • Abdullah, H. M. et al. Present and future scopes and challenges of plant pest and disease (P&D) monitoring: remote sensing, image processing, and artificial intelligence perspectives. Remote Sens. Appl. 32, 100996. https://doi.org/10.1016/j.rsase.2023.100996 (2023).

    Article 

    Google Scholar 

  • Daub, M. The beet cyst nematode (Heterodera schachtii): an ancient threat to sugar beet crops in central Europe has become an invisible actor. In Integrated Nematode Management: state-of-the-art and Visions for the Future 394–399 (CABI, UK, https://doi.org/10.1079/9781789247541.0055 (2021).

    Chapter 

    Google Scholar 

  • Phani, V., Khan, M. R. & Dutta, T. K. Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Prot. 144, 1005573. https://doi.org/10.1016/j.cropro.2021.105573 (2021).

    Article 

    Google Scholar 

  • Daraban, G. M., Hlihor, R. M. & Suteu, D. Pesticides vs. biopesticides: from pest management to toxicity and impacts on the environment and human health. Toxics 11, 983. https://doi.org/10.3390/toxics11120983 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khursheed, A. et al. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jyotsna, B. et al. Essential oils from plant resources as potent insecticides and repellents: current status and future perspectives. Biocatal. Agric. Biotechnol. 61, 103395. https://doi.org/10.1016/j.bcab.2024.103395 (2024).

    Article 
    CAS 

    Google Scholar 

  • Burtscher-Schaden, H., Durstberger, T. & Zaller, J. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 10, 753. https://doi.org/10.3390/toxics10120753 (2022).

  • Arnason, J. T., Sims, S. R. & Scott, I. M. Natural products from plants as insecticides. Phytochemistry and pharmacognosy in Encyclopedia of Life Support Systems (EOLSS), Developed Under the Auspices of the UNESCO, Eolss, Paris, France. (2012).

    Google Scholar 

  • Stevenson, P. C., Isman, M. B. & Belmain, S. R. Pesticidal plants in africa: a global vision of new biological control products from local uses. Ind. Crops Prod. 110, 2–9. https://doi.org/10.1016/j.indcrop.2017.08.034 (2017).

    Article 

    Google Scholar 

  • Oguh, C. E. et al. Natural pesticides (biopesticides) and uses in pest management – a critical review. Asian J. Biotech. Gen. Eng. 2, 1–18 (2019).

    Google Scholar 

  • Siegwart, M. et al. Resistance to bio-insecticides or how to enhance their sustainability: a review. Front. Plant. Sci. 6, 381. https://doi.org/10.3389/fpls.2015.00381 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521. https://doi.org/10.1038/nbt.2597 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Copping, L. G. & Duke, S. O. Natural products that have been used commercially as crop protection agents. Pest Manag Sci. 63, 524–554. https://doi.org/10.1002/ps.1378 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lengai, G. M. W., Muthomi, J. W. & Mbega, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239 (2020).

    Article 
    CAS 

    Google Scholar 

  • Šunjka, D. & Mechora, Š. An alternative source of biopesticides and improvement in their Formulation—Recent advances. Plants 11, 3172. https://doi.org/10.3390/plants11223172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • U.S. Environmental Protection Agency. Biopesticides: classes & definitions. (2025). Available at: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides.

  • U.S. Environmental Protection Agency. Pesticide registration improvement extension Act (PRIA-5) fee schedules. (2025). Available at: https://www.epa.gov/pria-fees.

  • European Food Safety Authority. Pesticides: regulations and guidance. (2025). Available at: https://www.efsa.europa.eu/en/topics/topic/pesticides.

  • European Commision. Regulation (EU) 2022/1439 amending Regulation (EC) No 283/2013 on data requirements for active substances (microorganisms). (2022). Available at: https://eur-lex.europa.eu/eli/reg/2022/1439/oj/eng.

  • European Commission. Explanatory notes on the implementation of data requirements for microbial active substances. (2023). Available at: https://food.ec.europa.eu/system/files/2023-10/pesticides_ppp_app-proc_guide_imp-data-req_micro-organisms-ppp_imp-reg-11072009.pdf.

  • López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F. & Sánchez-Moreiras, A. M. A natural Indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis Thaliana. Plant. Physiol. Biochem. 151, 378–390. https://doi.org/10.1016/j.plaphy.2020.03.047 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sołtys-Kalina, D., Strzelczyk-Żyta, D. M. Z., Wasilewicz-Flis, D., Marczewski, W. & I. & Phytotoxic potential of cultivated and wild potato species (Solanum sp.): role of glycoalkaloids, phenolics and flavonoids in phytotoxicity against mustard (Sinapis Alba L). Acta Physiol. Plant. 41, 55. https://doi.org/10.1007/s11738-019-2848-3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sun, F. et al. Effects of glycoalkaloids from Solanum plants on cucumber root growth. Phytochemistry 71, 1534–1538. https://doi.org/10.1016/j.phytochem.2010.06.002 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sivasankara Pillai, S. & Dandurand, L. M. Effect of steroidal glycoalkaloids on hatch and reproduction of the potato cyst nematode Globodera pallida. Plant. Dis. 105, 2975–2980. https://doi.org/10.1094/pdis-02-21-0247-re (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sánchez-Maldonado, A. F., Schieber, A. & Gänzle, M. G. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): glycoalkaloids and phenolic acids show synergistic effects. J. Appl. Microbiol. 120, 955–965. https://doi.org/10.1111/jam.13056 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bredenbruch, S. et al. The biological activity of bacterial rhamnolipids on Arabidopsis Thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. Pestic Biochem. Physiol. 204, 106103. https://doi.org/10.1016/j.pestbp.2024.106103 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wi, S. J., Ji, N. R. & Park, K. Y. Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant. Physiol. 159, 251–265. https://doi.org/10.1104/pp.112.194654 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, D. et al. Secondary Metabolite Engineering for Plant Immunity Against Various Pathogens. In Metabolic Engineering in Plants 123–143 (Springer Nature Singapore, Singapore, 2022). https://doi.org/10.1007/978-981-16-7262-0_5.

  • Wewer, V., Dombrink, I., Vom Dorp, K. & Dörmann, P. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J. Lipid Res. 52, 1039–1054. https://doi.org/10.1194/jlr.d013987 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, F. et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440–453. https://doi.org/10.1016/j.cell.2020.01.013 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500. https://doi.org/10.1038/nature05999 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nietzschmann, L. et al. Early Pep-13-induced immune responses are SERK3A/B-dependent in potato. Sci. Rep. 9, 18380. https://doi.org/10.1038/s41598-019-54944-y (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kammerhofer, N. et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New. Phytol. 207, 778–789. https://doi.org/10.1111/nph.13395 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willig, J. J. et al. From root to shoot: quantifying nematode tolerance in Arabidopsis thaliana by high-throughput phenotyping of plant development. J. Exp. Bot. 74, 5487–5499. https://doi.org/10.1101/2023.03.15.532731 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H., Li, M., Fan, Y., Liu, Y. & Qin, S. Antifungal activity of potato glycoalkaloids and its potential to control severity of dry rot caused by Fusarium sulphureum. Crop Sci. 63, 801–811. https://doi.org/10.1002/csc2.20874 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pane, C. et al. Managing rhizoctonia damping-off of rocket (Eruca sativa) seedlings by drench application of bioactive potato leaf phytochemical extracts. Biology 9, 1–18. https://doi.org/10.3390/biology9090270 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pacifico, D. et al. Sustainable use of bioactive compounds from Solanum tuberosum and brassicaceae wastes and by-products for crop protection—a review. Molecules 26 https://doi.org/10.3390/molecules26082174 (2021).

  • McKee, R. K. Affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. J. Gen. Microbiol. 20 https://doi.org/10.1099/00221287-20-3-686 (1959).

  • Hennessy, R. C. et al. Discovery of a bacterial gene cluster for deglycosylation of toxic potato steroidal glycoalkaloids α-chaconine and α-solanine. J. Agric. Food Chem. 68, 1390–1396. https://doi.org/10.1021/acs.jafc.9b07632 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y., Strelkov, S. E. & Hwang, S. F. Yield losses in Canola in response to Blackleg disease. Can. J. Plant. Sci. 100, 488–494. https://doi.org/10.1139/cjps-2019-0259 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gaulin, E., Bottin, A. & Dumas, B. Sterol biosynthesis in oomycete pathogens. Plant. Signal. Behav. 5, 258–260. https://doi.org/10.4161/psb.5.3.10551 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lelario, F. et al. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chem. Biol. Techn Agric. 5, 13. https://doi.org/10.1186/s40538-018-0125-0 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tajkarimi, M. M., Ibrahim, S. A. & Cliver, D. O. Antimicrobial herb and spice compounds in food. Food Control. 21, 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003 (2010).

    Article 
    CAS 

    Google Scholar 

  • Sasso, S., Scrano, L., Bonomo, M. G., Salzano, G. & Bufo, S. Secondary metabolites: applications on cultural heritage. Comm Appl. Biol. Sci 78, (2013).

  • Calabrese, E. J. Hormesis mediates acquired resilience: using plant-derived chemicals to enhance health. Annu. Rev. Food Sci. Technol. 12, 355–381. https://doi.org/10.1146/annurev-food-062420-124437 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 3, 13. https://doi.org/10.1038/s41514-017-0013-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, F. et al. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biol. Technol. 196, 112176. https://doi.org/10.1016/j.postharvbio.2022.112176 (2023).

    Article 
    CAS 

    Google Scholar 

  • Friedman, M., Roitman, J. N. & Kozukue, N. Glycoalkaloid and Calystegine contents of eight potato cultivars. J. Agric. Food Chem. 51, 2964–2973. https://doi.org/10.1021/jf021146f (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pęksa, A. et al. Assessment of the content of glycoalkaloids in potato snacks made from colored potatoes, resulting from the action of organic acids and thermal processing. Foods 13, 1712. https://doi.org/10.3390/foods13111712 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sijmons, P. C., Grundler, F. M. W., von Mende, N., Burrows, P. R. & Wyss, U. Arabidopsis Thaliana as a new model host for plant-parasitic nematodes. Plant. J. 1, 245–254. https://doi.org/10.1111/j.1365-313x.1991.00245.x (1991).

    Article 

    Google Scholar 

  • Matera, C., Grundler, F. M. & Schleker, A. S. S. Sublethal Fluazaindolizine doses inhibit development of the cyst nematode (Heterodera schachtii) during sedentary parasitism. Pest Manag Sci. 77, 3571–3580. https://doi.org/10.1002/ps.6411 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Origin (Pro). Version 2020. OriginLab Corporation. (2020).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/

  • Weil, H. L. et al. PLANTdataHUB: a collaborative platform for continuous FAIR data sharing in plant research. Plant J. 116, 974–988. https://doi.org/10.1111/tpj.16474 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading