Catastrophic disruption of asteroid 2023 CX1 and implications for planetary defence

  • Brown, P. G. et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013).

    Article 
    ADS 

    Google Scholar 

  • Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sárneczky, K. 2023 CX1. Minor Planet Electron. Circ. 2024-C103, 1 (2024).

    Google Scholar 

  • Colas, F. et al. The FRIPON and Vigie-Ciel networks. In Proc. International Meteor Conference (eds Rault, J.-L. & Roggemans, P.) 34–38 (International Meteor Organization, 2014).

  • Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).

    Article 

    Google Scholar 

  • Jenniskens, P. & Colas, F. 2023 CX1. Cent. Bur. Electron. Telegr. 5221, 1 (2023).

    Google Scholar 

  • Zanda, B. et al. Recovery and planned study of the Saint-Pierre-le-Viger meteorite: an achievement of the FRIPON/Vigie-Ciel citizen science program. LPI Contrib. 2990, 6206 (2023).

    ADS 

    Google Scholar 

  • Gattacceca, J. et al. The Meteoritical Bulletin, No. 112. Meteorit. Planet. Sci. 59, 1820–1823 (2024).

    Article 

    Google Scholar 

  • Bischoff, A. et al. Saint-Pierre-le-Viger (L5–6) from asteroid 2023 CX1 recovered in Normandy, France—220 years after the historic fall of L’Aigle (L6 breccia) in the neighborhood. Meteorit. Planet. Sci. 58, 1385–1398 (2023).

    Article 
    ADS 

    Google Scholar 

  • Devogèle, M. et al. Aperture photometry on asteroid trails: detection of the fastest rotating near-Earth object. Astron. Astrophys. 689, A63 (2024).

    Article 

    Google Scholar 

  • Popova, O., Borovička, J. & Campbell-Brown, M. D. in Meteoroids: Sources of Meteors on Earth and Beyond (eds Ryabova, G. O. et al.) 9 (Cambridge Univ. Press, 2019).

  • Fadeenko, Y. I. Destruction of meteoroids in the atmosphere. Combust. Explos. Shock Waves 3, 172–174 (1967).

    Article 

    Google Scholar 

  • Popova, O. et al. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011).

    Article 
    ADS 

    Google Scholar 

  • Borovička, J., Spurný, P. & Shrbený, L. Two strengths of ordinary chondritic meteoroids as derived from their atmospheric fragmentation modeling. Astron. J. 160, 42 (2020).

    Article 
    ADS 

    Google Scholar 

  • Jenniskens, P. et al. Bolide fragmentation: what parts of asteroid 2008 TC3 survived to the ground? Meteorit. Planet. Sci. 57, 1641–1664 (2022).

    Article 
    ADS 

    Google Scholar 

  • Whipple, A. L. Lyapunov times of the inner asteroids. Icarus 115, 347–353 (1995).

    Article 
    ADS 

    Google Scholar 

  • Swindle, T. D., Kring, D. A. & Weirich, J. R. in Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences (eds Jourdan, F. et al.) 333–347 (Geological Society, 2014).

  • Herzog, G. F. & Caffee, M. W. in Meteorites and Cosmochemical Processes (ed. Davis, A. M.) 419–454 (Elsevier, 2014).

  • Brown, P. G. et al. The Golden meteorite fall: fireball trajectory, orbit, and meteorite characterization. Meteorit. Planet. Sci. 58, 1773–1807 (2023).

    Article 
    ADS 

    Google Scholar 

  • Povinec, P. P. et al. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planet. Space Sci. 186, 104914 (2020).

    Article 

    Google Scholar 

  • Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature 634, 566–571 (2024).

    Article 

    Google Scholar 

  • Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature 634, 561–565 (2024).

    Article 

    Google Scholar 

  • Ceplecha, Z., Spurný, P., Borovička, J. & Keclikova, J. Atmospheric fragmentation of meteoroids. Astron. Astrophys. 279, 615–626 (1993).

    ADS 

    Google Scholar 

  • Borovička, J. & Spurný, P. The Carancas meteorite impact-encounter with a monolithic meteoroid. Astron. Astrophys. 485, L1–L4 (2008).

    Article 
    ADS 

    Google Scholar 

  • Brown, P. et al. Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res.: Planets 113, E09007 (2008).

    Article 
    ADS 

    Google Scholar 

  • Borovička, J., Spurný, P., Grigore, V. I. & Svoreň, J. The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids. Planet. Space Sci. 143, 147–158 (2017).

    Article 
    ADS 

    Google Scholar 

  • Vida, D. et al. Novo Mesto meteorite fall—trajectory, orbit, and fragmentation analysis from optical observations. In Proc. Europlanet Science Congress 2021 https://doi.org/10.5194/epsc2021-139 (Copernicus Meetings, 2021).

  • Vida, D. et al. Accurate characterization of metre-sized impactors through casual bolide observations—Novo Mesto superbolide as evidence for a new class of high-risk objects. In Proc. 8th IAA Planetary Defense Conference (International Academy of Astronautics, 2023).

  • Jenniskens, P. et al. Orbit and origin of the LL7 chondrite Dishchii’bikoh (Arizona). Meteorit. Planet. Sci. 55, 535–557 (2020).

    Article 
    ADS 

    Google Scholar 

  • Morrison, D. Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact. Technical Memorandum NASA/TM–220174 (NASA, 2018).

  • Trigo-Rodríguez, J. M. et al. A numerical approach to study ablation of large bolides: application to Chelyabinsk. Adv. Astron. 2021, 8852772 (2021).

    Article 
    ADS 

    Google Scholar 

  • Moskovitz, N. A. et al. A common origin for dynamically associated near-Earth asteroid pairs. Icarus 333, 165–176 (2019).

    Article 
    ADS 

    Google Scholar 

  • Mommert, M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 18, 47–53 (2017).

    Article 
    ADS 

    Google Scholar 

  • Gaia Collaboration. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article 

    Google Scholar 

  • Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bowell, E. et al. in Asteroids II (eds Binzel, R. P. et al.) 524–556 (Univ. Arizona Press, 1989).

  • Pál, A. FITSH: a software package for image processing. Mon. Not. R. Astron. Soc. 421, 1825–1837 (2012).

    Article 
    ADS 

    Google Scholar 

  • Colomé, J. et al. The OAdM robotic observatory. Adv. Astron. 2010, 183016 (2010).

    Article 
    ADS 

    Google Scholar 

  • Raab, H. Astrometrica: astrometric data reduction of CCD images. Astrophys. Source Code Library ascl:1230.012 (2012).

  • Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).

    Article 
    ADS 

    Google Scholar 

  • Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011).

    Article 
    ADS 

    Google Scholar 

  • Berthier, J., Carry, B., Mahlke, M. & Normand, J. SsODNet: Solar System Open Database Network. Astron. Astrophys. 671, A151 (2023).

    Article 
    ADS 

    Google Scholar 

  • DeMeo, F. E. & Carry, B. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226, 723–741 (2013).

    Article 
    ADS 

    Google Scholar 

  • Usui, F. et al. Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite AKARI. Astrophys. J. 762, 56 (2013).

    Article 
    ADS 

    Google Scholar 

  • Eberhardt, P., Geiss, J. & Lutz, H. Neutrons in meteorites. Earth Sci. Meteorit. 34, 143–168 (1963).

    Google Scholar 

  • Wieler, R. et al. Exposure history of the Torino meteorite. Meteorit. Planet. Sci. 31, 265–272 (1996).

    Article 
    ADS 

    Google Scholar 

  • Leya, I. & Masarik, J. Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 44, 1061–1086 (2009).

    Article 
    ADS 

    Google Scholar 

  • Leya, I., Hirtz, J. & David, J.-C. Galactic cosmic rays, cosmic-ray variations, and cosmogenic nuclides in meteorites. Astrophys. J. 910, 136 (2021).

    Article 
    ADS 

    Google Scholar 

  • Borovička, J. The comparison of two methods of determining meteor trajectories from photographs. Bull. Astron. Inst. Czechoslov. 41, 391 (1990).

    ADS 

    Google Scholar 

  • Borovička, J. et al. Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog. Astron. Astrophys. 667, A97 (2022).

    Google Scholar 

  • Vida, D., Gural, P. S., Brown, P. G., Campbell-Brown, M. & Wiegert, P. Estimating trajectories of meteors: an observational Monte Carlo approach. I. Theory. Mon. Not. R. Astron. Soc. 491, 2688–2705 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ceplecha, Z. & Revelle, D. O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35 (2005).

    Article 
    ADS 

    Google Scholar 

  • Edwards, W. N., Brown, P. G. & ReVelle, D. O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).

    Article 
    ADS 

    Google Scholar 

  • Ens, T. A., Brown, P. G., Edwards, W. N. & Silber, E. Infrasound production by bolides: a global statistical study. J. Atmos. Sol.-Terr. Phys. 80, 208–229 (2012).

    Article 
    ADS 

    Google Scholar 

  • Gi, N. & Brown, P. G. Refinement of bolide characteristics from infrasound measurements. Planet. Space Sci. 143, 169–181 (2017).

    Article 
    ADS 

    Google Scholar 

  • ReVelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. NY Acad. Sci. 822, 284–302 (1997).

    Article 
    ADS 

    Google Scholar 

  • RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France. RESIF Information System https://doi.org/10.15778/RESIF.FR (1995).

  • Virieux, J., Garnier, N., Blanc, E. & Dessa, J.-X. Paraxial ray tracing for atmospheric wave propagation. Geophys. Res. Lett. 31, L20106 (2004).

    Article 
    ADS 

    Google Scholar 

  • Listowski, C. et al. Stratospheric gravity waves impact on infrasound transmission losses across the International Monitoring System. Pure Appl. Geophys. 181, 33 (2024).

    Google Scholar 

  • Moré, J. J. in Numerical Analysis (ed. Watson, G. A.) 105–116 (Springer, 2006).

  • Riebe, M. E. I. et al. Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments. Meteorit. Planet. Sci. 52, 2353–2374 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).

    Article 

    Google Scholar 

  • Leya, I. et al. Calibration of cosmogenic noble gas production based on 36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique. Meteorit. Planet. Sci. 50, 1863–1879 (2015).

    Article 
    ADS 

    Google Scholar 

  • Martin, I. H. M. J. A=71. Zn, Ga, Ge, As, Se, Br, Kr. Nucl. Data Sheets Sect. B 1, 13–26 (1966).

    Article 
    ADS 

    Google Scholar 

  • Nishiizumi, K., Regnier, S. & Marti, K. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. 50, 156–170 (1980).

    Article 
    ADS 

    Google Scholar 

  • Dalcher, N. et al. Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1. Refined production rates for cosmogenic 21Ne and 38Ar. Meteorit. Planet. Sci. 48, 1841–1862 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lewis, J. A. & Jones, R. H. Phosphate and feldspar mineralogy of equilibrated L chondrites: the record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteorit. Planet. Sci. 51, 1886–1913 (2016).

    Article 
    ADS 

    Google Scholar 

  • Povinec, P., Sýkora, I., Ferrière, L. & Koeberl, C. Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. J. Radioanal. Nucl. Chem. 324, 349–357 (2020).

    Article 

    Google Scholar 

  • Kováčik, A., Sýkora, I. & Povinec, P. P. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J. Radioanal. Nucl. Chem. 298, 665–672 (2013).

    Article 

    Google Scholar 

  • Eugster, O., Busemann, H., Lorenzetti, S. & Terribilini, D. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002).

    Article 
    ADS 

    Google Scholar 

  • Martschini, M. et al. 5 years of ion-laser interaction mass spectrometry—status and prospects of isobar suppression in IAMS by lasers. Radiocarbon 64, 555–568 (2022).

    Article 

    Google Scholar 

  • Lachner, J. et al. Highly sensitive 26Al measurements by ion-laser-interaction mass spectrometry. Int. J. Mass Spectrom. 465, 116576 (2021).

    Article 

    Google Scholar 

  • Rugel, G. et al. The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl. Instrum. Methods Phys. Res. Sect. B 370, 94–100 (2016).

    Article 
    ADS 

    Google Scholar 

  • Cripe, J. D. & Moore, C. B. Total sulfur content of ordinary chondrites. Meteoritics 10, 387 (1975).

    ADS 

    Google Scholar 

  • Grady, M. M., Wright, I. P. & Pillinger, C. T. A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics 24, 147 (1989).

    Article 
    ADS 

    Google Scholar 

  • Hashizume, K. & Sugiura, N. Nitrogen isotopes in bulk ordinary chondrites. Geochim. Cosmochim. Acta 59, 4057–4069 (1995).

    Article 
    ADS 

    Google Scholar 

  • Graf, T. et al. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54, 2511–2520 (1990).

    Article 
    ADS 

    Google Scholar 

  • Bischoff, A. et al. The anomalous polymict ordinary chondrite breccia of Elmshorn (H3-6)—late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8 Gyr ago. Meteorit. Planet. Sci. 59, 2321–2356 (2024).

    Article 

    Google Scholar 

  • Standish, E. M. JPL Planetary and Lunar Ephemerides. Interoffice Memo DE405/LE405 (JPL, 1998).

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 77 (2023).

    Article 

    Google Scholar 

  • Egal, A. et al. 2023 CX1 – Saint-Pierre-le-Viger data. Zenodo https://doi.org/10.5281/zenodo.15328378 (2025).

  • Continue Reading