Schubert, M. et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).
Google Scholar
Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).
Google Scholar
Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).
Google Scholar
Bubnova, R., Volkov, S., Albert, B. & Filatov, S. Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals 7, 93 (2017).
Google Scholar
Lin, I. C. et al. Extraction of anisotropic thermal vibration factors for oxygen from the Ti L2,3-edge in SrTiO3. J. Phys. Chem. C 127, 17802–17808 (2023).
Google Scholar
Abramov, Y. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A. & Brown, I. D. The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Crystallogr. B 51, 942–951 (1995).
Google Scholar
Gong, Y. et al. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 10, 2200038 (2022).
Google Scholar
Jauch, W. & Reehuis, M. Electron-density distribution in cubic SrTiO3: a comparative gamma-ray diffraction study. Acta Crystallogr. A 61, 411–417 (2005).
Google Scholar
Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).
Google Scholar
Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).
Google Scholar
Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).
Google Scholar
Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).
Google Scholar
Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).
Google Scholar
Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).
Google Scholar
Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).
Google Scholar
Zeiger, P. M. & Rusz, J. Simulations of spatially and angle-resolved vibrational electron energy loss spectroscopy for a system with a planar defect. Phys. Rev. B 104, 094103 (2021).
Google Scholar
Hoglund, E. R. et al. Direct visualization of localized vibrations at complex grain boundaries. Adv. Mater. 35, e2208920 (2023).
Google Scholar
Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).
Google Scholar
Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).
Google Scholar
Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).
Google Scholar
Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).
Google Scholar
Huang, J. K. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
Google Scholar
Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).
Google Scholar
Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).
Google Scholar
Casella, L. & Zaccone, A. Soft mode theory of ferroelectric phase transitions in the low-temperature phase. J. Phys. Condens. Matter 33, 165401 (2021).
Google Scholar
Burns, G. & Dacol, F. H. Lattice modes in ferroelectric perovskites. III. Soft modes in BaTiO3. Phys. Rev. B 18, 5750–5755 (1978).
Google Scholar
Tian, Z. et al. Preparation of nano BaTiO3‐based ceramics for multilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc. 92, 830–833 (2009).
Google Scholar
Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).
Google Scholar
Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).
Google Scholar
Sun, H. et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022).
Google Scholar
He, R. et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics. Phys. Rev. B 105, 064104 (2022).
Google Scholar
van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).
Google Scholar
Niedermeier, C. A. et al. Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3. Phys. Rev. B 101, 125206 (2020).
Google Scholar
Smith, J., Huang, Z., Gao, W., Zhang, G. & Chi, M. Atomic resolution cryogenic 4D-STEM imaging via robust distortion correction. ACS Nano 17, 11327–11334 (2023).
Google Scholar
Zeiger, P. M. & Rusz, J. Efficient and versatile model for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).
Google Scholar
Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice method and its application to vibrational electron energy loss spectroscopy using parallel illumination. Phys. Rev. B 104, 104301 (2021).
Google Scholar
Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).
Google Scholar
Krivanek, O. et al. Damage-free analysis of biological materials by vibrational spectroscopy in the EM. Microsc. Microanal. 26, 108–110 (2020).
Google Scholar
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Google Scholar
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Google Scholar
Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).
Google Scholar
Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).
Google Scholar
Spiecker, E. Determination of crystal polarity from bend contours in transmission electron microscope images. Ultramicroscopy 92, 111–132 (2002).
Google Scholar
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Google Scholar
Yan, X. et al. Curvature-induced one-dimensional phonon polaritons at edges of folded boron nitride sheets. Nano Lett. 22, 9319–9326 (2022).
Google Scholar
Culjak, I., Abram, D., Pribanic, T., Dzapo, H. & Cifrek, M. A brief introduction to OpenCV. In Proc. 35th International Convention MIPRO (ed. Biljanović, P.) 1725–1730 (IEEE, 2012).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).
Google Scholar
Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Google Scholar
Carreras, A. phonoLAMMPS Documentation. GitHub https://github.com/abelcarreras/phonolammps (2023).
Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).
Google Scholar
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).
Google Scholar
Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).
Google Scholar
Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).
Google Scholar
Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).
Google Scholar
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Google Scholar
Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at high temperature. Phys. Rev. B 22, 5501–5506 (1980).
Google Scholar
Stirling, W. G. Neutron inelastic scattering study of the lattice dynamics of strontium titanate: harmonic models. J. Phys. C 5, 2711 (1972).
Google Scholar
Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018).
Google Scholar
Scalabrin, A., Chaves, A. S., Shim, D. S. & Porto, S. P. S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731–742 (1977).
Google Scholar
Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 21, 215901 (2009).
Google Scholar
Evarestov, R. A. & Bandura, A. V. First-principles calculations on the four phases of BaTiO3. J. Comput. Chem. 33, 1123–1130 (2012).
Google Scholar
Ehsan, S., Arrigoni, M., Madsen, G. K. H., Blaha, P. & Tröster, A. First-principles self-consistent phonon approach to the study of the vibrational properties and structural phase transition of BaTiO3. Phys. Rev. B 103, 094108 (2021).
Google Scholar