Bellini, S. Ulteriori Studi Sui “Batteri Magnetosensibili” (University of Pavia, 1963).
Blakemore, R. P. Magnetotactic bacteria. Science 190, 377–379 (1975).
Google Scholar
Balkwill, D., Maratea, D. & Blakemore, R. P. Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141, 1399–1408 (1980).
Google Scholar
Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).
Google Scholar
Goswami, P. et al. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes 8, 43 (2022).
Google Scholar
Lin, W. et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 12, 1508–1519 (2018).
Google Scholar
Liu, J. et al. Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana Volcanic Arc. Sci. Rep. 7, 17964 (2017).
Google Scholar
Flies, C. B. et al. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52, 185–195 (2005).
Google Scholar
Dufour, S. C. et al. Magnetosome-containing bacteria living as symbionts of bivalves. ISME J. 8, 2453–2462 (2014).
Google Scholar
Monteil, C. L. et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088–1095 (2019). This seminal study discovers a symbiosis between protists and magnetosome-forming bacteria.
Google Scholar
Amor, M., Tharaud, M., Gélabert, A. & Komeili, A. Single-cell determination of iron content in magnetotactic bacteria. Implications for the iron biogeochemical cycle. Environ. Microbiol. 22, 823–831 (2020).
Google Scholar
Lin, W., Bazylinski, D. A., Xiao, T., Wu, L.-F. & Pan, Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ. Microbiol. 16, 2646–2658 (2014).
Google Scholar
Schulz-Vogt, H. N. et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 13, 1198–1208 (2019). This work describes long-distance phosphate shuttling by MTB and solves a long-standing geochemical conundrum.
Google Scholar
Kopp, R. E. & Kirschvink, J. L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev. 86, 42–61 (2008).
Google Scholar
Shen, J. et al. Renaissance for magnetotactic bacteria in astrobiology. ISME J. 17, 1526–1534 (2023).
Google Scholar
Correa, T., Presciliano, R. & Abreu, F. Why does not nanotechnology go green? Bioprocess simulation and economics for bacterial-origin magnetite nanoparticles. Front. Microbiol. 12, 718232 (2021).
Google Scholar
Schleifer, K. H. et al. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst. Appl. Microbiol. 14, 379–385 (1991).
Google Scholar
Matsunaga, T., Sakaguchi, T. & Tadokoro, F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 35, 651–655 (1991).
Google Scholar
Kopp, R. E., Nash, C. Z., Kirschvink, J. L. & Leadbetter, J. R. A possible magnetite/maghemite electrochemical battery in the magnetotactic bacteria. Eos Trans. AGU 85, GP34A-06 (2004).
Guo, F. F. et al. Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol. 14, 1722–1729 (2012).
Google Scholar
Frankel, R., Williams, T. & Bazylinski, D. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 1–24 (Springer, 2007).
Popp, F., Armitage, J. P. & Schüler, D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat. Commun. 5, 5398 (2014). This study addresses the molecular mechanisms of bacterial magneto–aerotaxis, revealing that magnetic swimming polarity and aerotaxis are linked closely.
Google Scholar
Murat, D. et al. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic spirillum. J. Bacteriol. 197, 3275–3282 (2015).
Google Scholar
Lefèvre, C. T. et al. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys. J. 107, 527–538 (2014).
Google Scholar
Zhang, S.-D. et al. Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1. Environ. Microbiol. Rep. 6, 14–20 (2014).
Google Scholar
Frankel, R. Magnetic guidance of organisms. Annu. Rev. Biophys. Bioeng. 13, 85–103 (1984).
Google Scholar
Pfeiffer, D., Herz, J., Schmiedel, J., Popp, F. & Schüler, D. Spatiotemporal organization of chemotaxis pathways in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 87, e02229-20 (2020).
Google Scholar
Herz, J. et al. A two‐protein chemoreceptor complex regulates oxygen thresholds in bacterial magneto‐aerotaxis. Adv. Sci. https://doi.org/10.1002/advs.202417315 (2025).
Glassmeier, K.-H. & Vogt, J. Magnetic polarity transitions and biospheric effects. Space Sci. Rev. 155, 387–410 (2010).
Google Scholar
Lin, W., Kirschvink, J. L., Paterson, G. A., Bazylinski, D. A. & Pan, Y. On the origin of microbial magnetoreception. Natl Sci. Rev. 7, 472–479 (2020).
Google Scholar
Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotech. 9, 193–197 (2014).
Google Scholar
Schübbe, S. et al. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185, 5779–5790 (2003).
Google Scholar
Monteil, C. L. et al. Repeated horizontal gene transfers triggered parallel evolution of magnetotaxis in two evolutionary divergent lineages of magnetotactic bacteria. ISME J. 14, 1783–1794 (2020).
Google Scholar
Uebe, R., Schüler, D., Jogler, C. & Wiegand, S. Reevaluation of the complete genome sequence of Magnetospirillum gryphiswaldense MSR-1 with single-molecule real-time sequencing data. Genome Announc. 6, e00309–e00318 (2018).
Google Scholar
Zwiener, T. et al. Identification and elimination of genomic regions irrelevant for magnetosome biosynthesis by large-scale deletion in Magnetospirillum gryphiswaldense. BMC Microbiol. 21, 65 (2021).
Google Scholar
Lohße, A. et al. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6, e25561 (2011).
Google Scholar
McCausland, H. C., Wetmore, K. M., Arkin, A. P. & Komeili, A. Global analysis of biomineralization genes in Magnetospirillum magneticum AMB-1. mSystems 7, e01037–21 (2022).
Google Scholar
Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).
Google Scholar
Silva, K. T. et al. Genome-wide identification of essential and auxiliary gene sets for magnetosome biosynthesis in Magnetospirillum gryphiswaldense. mSystems 5, e00565-20 (2020). Together with McCausland et al. (2022), this work describes genome-wide transposon-mutagenesis studies that confirm the importance of MGC and identify further metabolic genes supporting magnetosome biosynthesis.
Google Scholar
Lohße, A. et al. Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2658–2669 (2014). Together with Lohße et al. (2011) and Murat et al. (2010), this work assigns putative functions in each biogenesis step to many magnetosome genes.
Google Scholar
Dziuba, M. V. et al. The complex transcriptional landscape of magnetosome gene clusters in Magnetospirillum gryphiswaldense. mSystems 6, e00893-21 (2021). This study uncovers the intricate transcription of MGC that control magnetosome biosynthesis.
Google Scholar
Rioux, J.-B. et al. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS ONE 5, e9151 (2010).
Google Scholar
Wan, J. et al. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat. Commun. 13, 5652 (2022). This study reports the discovery of proteins causing gapped magnetosome chains that explains distinct magnetosome chain phenotypes in different magnetospirilla.
Google Scholar
Juhas, M. et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33, 376–393 (2009).
Google Scholar
Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176–7184 (2005).
Google Scholar
Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol. 11, 1267–1277 (2009).
Google Scholar
Fukuda, Y., Okamura, Y., Takeyama, H. & Matsunaga, T. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett. 580, 801–812 (2006).
Google Scholar
Jogler, C. et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl. Environ. Microbiol. 75, 3972–3979 (2009).
Google Scholar
Raschdorf, O. et al. Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet. 12, e1006101 (2016).
Google Scholar
Cornejo, E., Subramanian, P., Li, Z., Jensen, G. J. & Komeili, A. Dynamic remodeling of the magnetosome membrane is triggered by the initiation of biomineralization. mBio 7, 15 (2016). Together with Raschdorf et al. (2016), this work provides an analysis on the process and determinants for magnetosome membrane formation.
Google Scholar
Grünberg, K. et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050 (2004).
Google Scholar
Gorby, Y. A., Beveridge, T. J. & Blakemore, R. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170, 834–841 (1988).
Google Scholar
Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).
Google Scholar
Uebe, R. et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107, 542–557 (2018).
Google Scholar
Wan, J. et al. A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc. Natl Acad. Sci. USA 119, e2111745119 (2022). This study identifies a key regulatory mechanism for magnetosome membrane growth, highlighting the role of the protease MamE and its substrate MamD.
Google Scholar
Zeytuni, N. et al. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain. PLoS ONE 9, e92141 (2014).
Google Scholar
Zeytuni, N. et al. Bacterial magnetosome biomineralization — a novel platform to study molecular mechanisms of human CDF-related type-II diabetes. PLoS ONE 9, e97154 (2014).
Google Scholar
Grünberg, K., Wawer, C., Tebo, B. M. & Schüler, D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001). Together with Grünberg et al. (2004), this work has identified magnetosome-associated proteins that led to the discovery of biosynthetic magnetosome gene clusters.
Google Scholar
Raschdorf, O. et al. A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. J. Proteom. 172, 88–99 (2018).
Google Scholar
Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).
Google Scholar
Tanaka, M. et al. Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6, 5234–5247 (2006).
Google Scholar
Nudelman, H. & Zarivach, R. Structure prediction of magnetosome-associated proteins. Front. Microbiol. 5, 9 (2014).
Google Scholar
Yamamoto, D. et al. Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc. Natl Acad. Sci. USA 107, 9382–9387 (2010).
Google Scholar
Zeytuni, N. et al. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc. Natl Acad. Sci. USA 108, E480–E487 (2011).
Google Scholar
Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).
Google Scholar
Paulus, A. et al. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria. Nat. Commun. 15, 10657 (2024). This paper reports the discovery that MamF-like proteins are homologous to a plastid translocase in plants and are involved in targeting of proteins to the magnetosome membrane.
Google Scholar
Kikuchi, S. et al. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339, 571–574 (2013).
Google Scholar
Arakaki, A. et al. Comparative subcellular localization analysis of magnetosome proteins reveals a unique localization behavior of Mms6 protein onto magnetite crystals. J. Bacteriol. 198, 2794–2802 (2016).
Google Scholar
Bickley, C. D., Wan, J. & Komeili, A. Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 206, e0000824 (2024).
Google Scholar
Singappuli-Arachchige, D. et al. The magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, is a lipid-activated ferric reductase. Int. J. Mol. Sci. 23, 10305 (2022).
Google Scholar
Fischer, A., Schmitz, M., Aichmayer, B., Fratzl, P. & Faivre, D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J. R. Soc. Interface 8, 1011–1018 (2011).
Google Scholar
Faivre, D. & Zuddas, P. An integrated approach for determining the origin of magnetite nanoparticles. Earth Planet. Sci. Lett. 243, 53–60 (2006).
Google Scholar
Lenders, J. J. M. et al. Combinatorial evolution of biomimetic magnetite nanoparticles. Adv. Funct. Mater. 27, 1604863 (2017).
Google Scholar
Faivre, D. & Schüler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008).
Google Scholar
Amor, M. et al. Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: an iron isotope study. Geochim. Cosmochim. Acta 232, 225–243 (2018).
Google Scholar
Amor, M. et al. Magnetotactic bacteria accumulate a large pool of iron distinct from their magnetite crystals. Appl. Environ. Microbiol. 86, e01278-20 (2020).
Google Scholar
Jogler, C. et al. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl Acad. Sci. USA 108, 1134–1139 (2011).
Google Scholar
Calugay, R. J. et al. Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J. Biosci. Bioeng. 101, 445–447 (2006).
Google Scholar
Uebe, R. et al. Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010).
Google Scholar
Amor, M. et al. Defining local chemical conditions in magnetosomes of magnetotactic bacteria. J. Phys. Chem. B 126, 2677–2687 (2022).
Google Scholar
Xia, M., Wei, J., Lei, Y. & Ying, L. A novel ferric reductase purified from Magnetospirillum gryphiswaldense MSR-1. Curr. Microbiol. 55, 71–75 (2007).
Google Scholar
Zhang, C. et al. Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. J. Bacteriol. 195, 876–885 (2013).
Google Scholar
Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol. 15, 2712–2735 (2013).
Google Scholar
Rong, C. et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol. 159, 530–536 (2008).
Google Scholar
Zwiener, T. et al. Towards a ‘chassis’ for bacterial magnetosome biosynthesis: genome streamlining of Magnetospirillum gryphiswaldense by multiple deletions. Microb. Cell Fact. 20, 621 (2021).
Google Scholar
Rong, C. et al. FeoB2 functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J. Bacteriol. 194, 3972–3976 (2012).
Google Scholar
Wang, Q. et al. Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions. Sci. Rep. 7, 2800 (2017).
Google Scholar
Faivre, D., Böttger, L. H., Matzanke, B. F. & Schüler, D. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew. Chem. Int. Ed. 46, 8495–8499 (2007).
Google Scholar
Frankel, R., Papaefthymiou, G. C., Blakemore, R. P. & O’Brian, W. Fe3O4 precipitation in magnetotactic bacteria. Biochim. Biophys. Acta 763, 147–159 (1983).
Google Scholar
Fdez-Gubieda, M. L. et al. Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies. ACS Nano 7, 3297–3305 (2013).
Google Scholar
Uebe, R. et al. Bacterioferritin of Magnetospirillum gryphiswaldense is a heterotetraeicosameric complex composed of functionally distinct subunits but is not involved in magnetite biomineralization. mBio 10, e02795-18 (2019). This study demonstrates that magnetite biomineralization is independent of ferritin-derived ferrihydrite precursors.
Google Scholar
Chevrier, D. M. et al. Synchrotron-based nano-X-ray absorption near-edge structure revealing intracellular heterogeneity of iron species in magnetotactic bacteria. Small Sci. 2, 2100089 (2022).
Google Scholar
Berny, C. et al. A method for producing highly pure magnetosomes in large quantity for medical applications using Magnetospirillum gryphiswaldense MSR-1 magnetotactic bacteria amplified in minimal growth media. Front. Bioeng. Biotechnol. 8, 403 (2020).
Google Scholar
Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. & Schüler, D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol. 89, 872–886 (2013).
Google Scholar
Barber-Zucker, S. et al. Disease-homologous mutation in the cation diffusion facilitator protein MamM causes single-domain structural loss and signifies its importance. Sci. Rep. 6, 31933 (2016).
Google Scholar
Hochella, M. F. et al. Nanominerals, mineral nanoparticles, and Earth systems. Science 319, 1631–1635 (2008).
Google Scholar
Eguchi, Y., Fukumori, Y. & Taoka, A. Measuring magnetosomal pH of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using pH-sensitive fluorescent proteins. Biosci. Biotechnol. Biochem. 82, 1243–1251 (2018).
Google Scholar
Amor, M. et al. Magnetochrome-catalyzed oxidation of ferrous iron by MamP enables magnetite crystal growth in the magnetotactic bacterium AMB-1. Proc. Natl Acad. Sci. USA 121, e2410245121 (2024).
Google Scholar
Siponen, M. I. et al. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502, 681–684 (2013).
Google Scholar
Jones, S. R. et al. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum. Proc. Natl Acad. Sci. USA 112, 3904–3909 (2015). Together with Siponen et al. (2013), this work describes the structure and function of a novel magnetochrome domain for magnetite biomineralization.
Google Scholar
Quinlan, A., Murat, D., Vali, H. & Komeili, A. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol. 80, 1075–1087 (2011).
Google Scholar
Li, Y. et al. Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J. Bacteriol. 195, 4297–4309 (2013).
Google Scholar
Li, Y., Raschdorf, O., Silva, K. T. & Schüler, D. The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2552–2562 (2014).
Google Scholar
Li, Y., Katzmann, E., Borg, S. & Schüler, D. The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 194, 4847–4856 (2012).
Google Scholar
Katzmann, E., Scheffel, A., Gruska, M., Plitzko, J. M. & Schüler, D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol. 77, 208–224 (2010).
Google Scholar
Abreu, F. et al. Cryo-electron tomography of the magnetotactic vibrio Magnetovibrio blakemorei: insights into the biomineralization of prismatic magnetosomes. J. Struct. Biol. 181, 162–168 (2013).
Google Scholar
Hershey, D. M. et al. MamO is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLoS Biol. 14, e1002402 (2016). This study reveals that the magnetosome protein MamO is a pseudoprotease that facilitates MamE-dependent proteolysis.
Google Scholar
Lohße, A. et al. Overproduction of magnetosomes by genomic amplification of biosynthetic gene clusters in a magnetotactic bacterium. Appl. Environ. Microbiol. 82, 3032–3041 (2016).
Google Scholar
Nguyen, H. V. et al. A protein-protein interaction in magnetosomes: TPR protein MamA interacts with an Mms6 protein. Biochem. Biophys. Rep. 7, 39–44 (2016).
Google Scholar
Rawlings, A. E. et al. Ferrous iron binding key to Mms6 magnetite biomineralisation. A mechanistic study to understand magnetite formation using pH titration and NMR spectroscopy. Chemistry 22, 7885–7894 (2016).
Google Scholar
Arakaki, A., Webbs, J. & Matsunaga, T. A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magnetotacticum strain AMB-1. J. Biol. Chem. 278, 8745–8750 (2003).
Google Scholar
Toro-Nahuelpan, M. et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat. Microbiol. 4, 1978–1989 (2019). This paper reveals how a straight magnetosome chain is fitted into the helical cell body of magnetospirilla by a novel curvature-sensing and filament-forming magnetoskeletal protein.
Google Scholar
Toro-Nahuelpan, M. et al. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 14, 88 (2016). This study shows that magnetosome chains are precisely midcell-positioned, split and equipartitioned during cell division by the dynamics of the magnetoskeletal MamK protein.
Google Scholar
Katzmann, E. et al. Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol. Microbiol. 82, 1316–1329 (2011).
Google Scholar
Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006). Together with Komeili et al. (2006), this study reports the discovery of a novel cytoskeleton that organizes magnetosome chains in MTB.
Google Scholar
Scheffel, A. & Schüler, D. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol. 189, 6437–6446 (2007).
Google Scholar
Staniland, S. S., Moisescu, C. & Benning, L. G. Cell division in magnetotactic bacteria splits magnetosome chain in half. J. Basic Microbiol. 50, 392–396 (2010).
Google Scholar
Löwe, J., He, S., Scheres, S. H. W. & Savva, C. G. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc. Natl Acad. Sci. USA 113, 13396–13401 (2016).
Google Scholar
Ozyamak, E., Kollman, J., Agard, D. A. & Komeili, A. The bacterial actin MamK: in vitro assembly behavior and filament architecture. J. Biol. Chem. 288, 4265–4277 (2013).
Google Scholar
Draper, O. et al. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol. Microbiol. 82, 342–354 (2011).
Google Scholar
Pradel, N., Santini, C., Bernadac, A., Fukumori, Y. & Wu, L. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc. Natl Acad. Sci. USA 103, 17485–17489 (2006).
Google Scholar
Pfeiffer, D. & Schüler, D. Quantifying the benefit of a dedicated “magnetoskeleton” in bacterial magnetotaxis by live-cell motility tracking and soft agar swimming assay. Appl. Environ. Microbiol. 86, e01976-19 (2020).
Google Scholar
Abreu, N. et al. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 196, 3111–3121 (2014).
Google Scholar
Sakaguchi, S., Taoka, A. & Fukumori, Y. Analysis of magnetotactic behavior by swimming assay. Biosci. Biotechnol. Biochem. 77, 940–947 (2013).
Google Scholar
Taoka, A. et al. Tethered magnets are the key to magnetotaxis: direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells. mBio 8, e00679-17 (2017).
Google Scholar
Pfeiffer, D. et al. A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc. Natl Acad. Sci. USA 117, 32086–32097 (2020). This study reports the discovery of a novel cytoskeletal protein linking the generic cell shape-determining cytoskeleton with the magnetoskeleton.
Google Scholar
Toro-Nahuelpan, M., Plitzko, J. M., Schüler, D. & Pfeiffer, D. In vivo architecture of the polar organizing protein Z (PopZ) meshwork in the Alphaproteobacteria Magnetospirillum gryphiswaldense and Caulobacter crescentus. J. Mol. Biol. 434, 167423 (2022).
Google Scholar
Toro-Nahuelpan, M. et al. A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense. Mol. Microbiol. 112, 1423–1439 (2019).
Google Scholar
Pfeiffer, D., Toro-Nahuelpan, M., Bramkamp, M., Plitzko, J. M. & Schüler, D. The polar organizing protein PopZ is fundamental for proper cell division and segregation of cellular content in Magnetospirillum gryphiswaldense. mBio 10, e02716–e02718 (2019).
Google Scholar
Müller, F. D. et al. The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J. Bacteriol. 196, 650–659 (2014).
Google Scholar
Ding, Y. et al. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 1097–1105 (2010).
Google Scholar
Wang, X. et al. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol. Rep. 8, 371–381 (2016).
Google Scholar
Riese, C. N. et al. The transcriptomic landscape of Magnetospirillum gryphiswaldense during magnetosome biomineralization. BMC Genom. 23, 699 (2022).
Google Scholar
Yamazaki, T., Oyanagi, H., Fujiwara, T. & Fukumori, Y. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum — a novel cytochrome cd1 with Fe(II) nitrite oxidoreductase activity. Eur. J. Biochem. 233, 665–671 (1995).
Google Scholar
Dziuba, M. V., Müller, F.-D., Pósfai, M. & Schüler, D. Exploring the host range for genetic transfer of magnetic organelle biosynthesis. Nat. Nanotech. 19, 115–123 (2024). Expanding the heterologous MGC expression described by Kolinko et al. (2014), this study demonstrates transplantation of magnetosome formation to a range of foreign bacteria and explores the host’s requirement for magnetosome biosynthesis.
Google Scholar
Heising, S. & Schink, B. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology 144, 2263–2269 (1998).
Google Scholar
Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).
Google Scholar
Wang, Q. et al. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Appl. Environ. Microbiol. 81, 8044–8053 (2015).
Google Scholar
Olszewska-Widdrat, A., Schiro, G., Reichel, V. E. & Faivre, D. Reducing conditions favor magnetosome production in Magnetospirillum magneticum AMB-1. Front. Microbiol. 10, 582 (2019).
Google Scholar
Riese, C. N. et al. An automated oxystat fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense. Microb. Cell Fact. 19, 206 (2020).
Google Scholar
Heyen, U. & Schüler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003).
Google Scholar
Moisescu, C., Ardelean, I. I. & Benning, L. G. The effect and role of environmental conditions on magnetosome synthesis. Front. Microbiol. 5, 49 (2014).
Google Scholar
Li, Y. et al. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 14, 153 (2014). Together with Li et al. (2013), Li et al. (2014) and Li et al. (2012), this work unravels the contribution of cellular respiration to magnetosomal redox balance.
Google Scholar
Zhang, Y. et al. The disruption of an OxyR-like protein impairs intracellular magnetite biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front. Microbiol. 8, 208 (2017).
Google Scholar
Niu, W. et al. OxyR controls magnetosome formation by regulating magnetosome island (MAI) genes, iron metabolism, and redox state. Free Radic. Biol. Med. 161, 272–282 (2020).
Google Scholar
Pang, B., Zheng, H., Ma, S., Tian, J. & Wen, Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res. 52, 2924–2941 (2024).
Google Scholar
Yukl, E. T., Elbaz, M. A., Nakano, M. M. & Moënne-Loccoz, P. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe–4S cluster. Biochemistry 47, 13084–13092 (2008).
Google Scholar
Awal, R. P. et al. Experimental analysis of diverse actin-like proteins from various magnetotactic bacteria by functional expression in Magnetospirillum gryphiswaldense. mBio 14, e0164923 (2023).
Google Scholar
Awal, R. P., Lefevre, C. T. & Schüler, D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 14, e0328222 (2023).
Google Scholar
Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).
Google Scholar
Ji, R. et al. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. Microbiome 12, 158 (2024).
Google Scholar
Uzun, M. et al. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front. Microbiol. 13, 945734 (2022).
Google Scholar
Uzun, M. et al. Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil. ISME J. 17, 204–214 (2023). This study reports the magnetic enrichment and genomic reconstruction of extremely rare uncultivated MTB, revealing a putatively fermentative metabolism.
Google Scholar
Lin, W. & Pan, Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ. Microbiol. Rep. 7, 237–242 (2015).
Google Scholar
Kolinko, S. et al. Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ. Microbiol. 15, 1290–1301 (2013).
Google Scholar
Schaible, G. A. et al. Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells. PLoS Biol. 22, e3002638 (2024).
Google Scholar
Lin, W. et al. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome 8, 152 (2020).
Google Scholar
Lins, U., McCartney, M. R., Farina, M., Frankel, R. B. & Buseck, P. R. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Appl. Environ. Microbiol. 71, 4902–4905 (2005).
Google Scholar
Li, J. et al. Biomineralization and magnetism of uncultured magnetotactic coccus strain THC‐1 with non‐chained magnetosomal magnetite nanoparticles. J. Geophys. Res. Solid Earth 125, e2020JB02085 (2020).
Google Scholar
Lefèvre, C. T. et al. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334, 1720–1723 (2011).
Google Scholar
Lin, W. et al. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae. ISME J. 8, 2463–2477 (2014).
Google Scholar
Rahn-Lee, L. et al. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet. 11, e1004811 (2015).
Google Scholar
Pohl, A. et al. Magnetite-binding proteins from the magnetotactic bacterium Desulfamplus magnetovallimortis BW-1. Nanoscale 13, 20396–20400 (2021).
Google Scholar
Monteil, C. L. et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ. Microbiol. 20, 4415–4430 (2018).
Google Scholar
Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274 (2013).
Google Scholar
Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl Acad. Sci. USA 114, 2171–2176 (2017). This study, together with Lin et al. (2018), reveals a broader taxonomic distribution of magnetosome biosynthesis and suggests an early evolutionary origin of magnetotaxis.
Google Scholar
Strbak, O. & Dobrota, D. Archean iron-based metabolism analysis and the photoferrotrophy-driven hypothesis of microbial magnetotaxis origin. Geomicrobiol. J. 36, 278–290 (2019).
Google Scholar
Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001).
Google Scholar
Bellinger, M. R. et al. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl Acad. Sci. USA 119, e2108655119 (2022).
Google Scholar
Monteil, C. L., Vallenet, D., Schüler, D. & Lefevre, C. T. Magnetosome proteins belong to universal protein families involved in many cell processes. Proc. Natl Acad. Sci. USA 119, e2208648119 (2022).
Google Scholar
de Vincentiis, S. et al. Induction of axonal outgrowth in mouse hippocampal neurons via bacterial magnetosomes. Int. J. Mol. Sci. 22, 4126 (2021).
Google Scholar
Roda, A. et al. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13, 4881–4889 (2013).
Google Scholar
Fdez-Gubieda, M. L. et al. Magnetotactic bacteria for cancer therapy. J. Appl. Phys. 128, 70902 (2020).
Google Scholar
Alphandéry, E. Applications of magnetotactic bacteria and magnetosome for cancer treatment: a review emphasizing on practical and mechanistic aspects. Drug Discov. Today 25, 1444–1452 (2020).
Google Scholar
Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).
Google Scholar
Awal, R. P. et al. Sesbanimide R, a novel cytotoxic polyketide produced by magnetotactic bacteria. mBio 12, e00591-21 (2021).
Google Scholar
Mannucci, S. et al. Magnetosomes extracted from Magnetospirillum gryphiswaldense as theranostic agents in an experimental model of glioblastoma. Contrast Media Mol. Imaging https://doi.org/10.1155/2018/2198703 (2018).
Nguyen, T. N., Chebbi, I., Le Fèvre, R., Guyot, F. & Alphandéry, E. Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl. Microbiol. Biotechnol. 107, 1159–1176 (2023).
Google Scholar
Taukulis, R. et al. Magnetic iron oxide nanoparticles as MRI contrast agents — a comprehensive physical and theoretical study. Magnetohydrodynamics 51, 721–748 (2015).
Google Scholar
Kraupner, A. et al. Bacterial magnetosomes — nature’s powerful contribution to MPI tracer research. Nanoscale 9, 5788–5793 (2017).
Google Scholar
Chades, T. et al. Set-up of a pharmaceutical cell bank of Magnetospirillum gryphiswaldense MSR1 magnetotactic bacteria producing highly pure magnetosomes. Microb. Cell Fact. 23, 70 (2024).
Google Scholar
Fernández-Castané, A. et al. A scalable biomanufacturing platform for bacterial magnetosomes. Food Bioprod. Process. 144, 110–122 (2024).
Google Scholar
Mandawala, C. et al. Biocompatible and stable magnetosome minerals coated with poly-l-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. J. Mater. Chem. B 5, 7644–7660 (2017).
Google Scholar
Mickoleit, F. et al. Assessing cytotoxicity, endotoxicity, and blood compatibility of nanoscale iron oxide magnetosomes for biomedical applications. ACS Appl. Nano Mater. 7, 1278–1288 (2024).
Google Scholar
Rosenfeldt, S. et al. Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications. Acta Biomater. 120, 293–303 (2021).
Google Scholar
Yoshino, T. et al. Magnetosome membrane engineering to improve G protein-coupled receptor activities in the magnetosome display system. Metab. Eng. 67, 125–132 (2021).
Google Scholar
Borg, S., Hofmann, J., Pollithy, A., Lang, C. & Schüler, D. New vectors for chromosomal integration enable high-level constitutive or inducible magnetosome expression of fusion proteins in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 80, 2609–2616 (2014).
Google Scholar
Mickoleit, F. & Schüler, D. Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes. Adv. Biosys. 2, 1700109 (2018).
Google Scholar
Honda, T., Tanaka, T. & Yoshino, T. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules 16, 3863–3868 (2015).
Google Scholar
Borg, S. et al. An intracellular nanotrap redirects proteins and organelles in live bacteria. mBio 6, e02117-14 (2015).
Google Scholar
Mickoleit, F., Lanzloth, C. & Schüler, D. A versatile toolkit for controllable and highly selective multifunctionalization of bacterial magnetic nanoparticles. Small 16, e1906922 (2020).
Google Scholar
Mickoleit, F. et al. Precise assembly of genetically functionalized magnetosomes and tobacco mosaic virus particles generates a magnetic biocomposite. ACS Appl. Mater. Interfaces 10, 37898–37910 (2018).
Google Scholar
Mickoleit, F. et al. A versatile magnetic nanoplatform for plug-and-play functionalization: genetically programmable cargo loading to bacterial magnetosomes by SpyCatcher “click biology”. ACS Nano 18, 27974–27987 (2024). This comprehensive study demonstrates the power of click biology for straightforward, in vitro functionalization of magnetosome particles for various applications.
Google Scholar