Bevacizumab enhances overall survival in newly diagnosed glioblastoma patients with high COX-2 expression

  • Woehrer, A., Bauchet, L. & Barnholtz-Sloan, J. S. Glioblastoma survival: Has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27, 666–674. https://doi.org/10.1097/wco.0000000000000144 (2014).

    Google Scholar 

  • Kan, L. K. et al. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis. BMJ Neurol. Open 2, e000069. https://doi.org/10.1136/bmjno-2020-000069 (2020).

    Google Scholar 

  • Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).

    Google Scholar 

  • Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740. https://doi.org/10.1200/jco.2008.19.8721 (2009).

    Google Scholar 

  • Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745. https://doi.org/10.1200/jco.2008.16.3055 (2009).

    Google Scholar 

  • Cohen, M. H., Shen, Y. L., Keegan, P. & Pazdur, R. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14, 1131–1138. https://doi.org/10.1634/theoncologist.2009-0121 (2009).

    Google Scholar 

  • Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400. https://doi.org/10.1038/nrd1381 (2004).

    Google Scholar 

  • Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722. https://doi.org/10.1056/NEJMoa1308345 (2014).

    Google Scholar 

  • Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708. https://doi.org/10.1056/NEJMoa1308573 (2014).

    Google Scholar 

  • Schmainda, K. M. et al. Value of dynamic contrast perfusion MRI to predict early response to bevacizumab in newly diagnosed glioblastoma: Results from ACRIN 6686 multicenter trial. Neuro Oncol. 23, 314–323. https://doi.org/10.1093/neuonc/noaa167 (2021).

    Google Scholar 

  • Xu, L. et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med. 6, 242ra284-242ra284 (2014).

    Google Scholar 

  • Macarulla, T. et al. Atezolizumab plus chemotherapy with or without bevacizumab in advanced biliary tract cancer: Clinical and biomarker data from the randomized phase II IMbrave151 trial. J. Clin. Oncol. 43, 545–557 (2024).

    Google Scholar 

  • Loureiro, L. V. M. et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg. Exp. Pathol. 3, 1–8 (2020).

    Google Scholar 

  • Jin, K., Qian, C., Lin, J. & Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 13, 1099811. https://doi.org/10.3389/fonc.2023.1099811 (2023).

    Google Scholar 

  • Xu, L. & Croix, B. S. Improving VEGF-targeted therapies through inhibition of COX-2/PGE2 signaling. Mol. Cell Oncol. 1, e969154. https://doi.org/10.4161/23723548.2014.969154 (2014).

    Google Scholar 

  • Shono, T., Tofilon, P. J., Bruner, J. M., Owolabi, O. & Lang, F. F. Cyclooxygenase-2 expression in human gliomas: Prognostic significance and molecular correlations. Cancer Res. 61, 4375–4381 (2001).

    Google Scholar 

  • Zhang, F., Chu, J. & Wang, F. Expression and clinical significance of cyclooxygenase 2 and survivin in human gliomas. Oncol. Lett. 14, 1303–1308. https://doi.org/10.3892/ol.2017.6281 (2017).

    Google Scholar 

  • Wang, X. et al. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis. J. Neurooncol. 125, 277–285. https://doi.org/10.1007/s11060-015-1919-6 (2015).

    Google Scholar 

  • Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027. https://doi.org/10.1200/jco.2005.06.081 (2005).

    Google Scholar 

  • Qiu, J., Shi, Z. & Jiang, J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov. Today 22, 148–156. https://doi.org/10.1016/j.drudis.2016.09.017 (2017).

    Google Scholar 

  • Lu-Emerson, C. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J. Clin. Oncol. 33, 1197–1213. https://doi.org/10.1200/jco.2014.55.9575 (2015).

    Google Scholar 

  • Motomura, K. et al. Cost of medical care for malignant brain tumors at hospitals in the Japan clinical oncology group brain-tumor study group. Jpn. J. Clin. Oncol. 54, 1123–1131. https://doi.org/10.1093/jjco/hyae116 (2024).

    Google Scholar 

  • Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell Physiol. 234, 5683–5699. https://doi.org/10.1002/jcp.27411 (2019).

    Google Scholar 

  • Lin, P. C., Lin, Y. J., Lee, C. T., Liu, H. S. & Lee, J. C. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol. Lett. 6, 733–739 (2013).

    Google Scholar 

  • Shi, C. et al. High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. Int. J. Oncol. 53, 1138–1148. https://doi.org/10.3892/ijo.2018.4462 (2018).

    Google Scholar 

  • Kambe, A. et al. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J. Neurooncol. 166, 175–183. https://doi.org/10.1007/s11060-023-04550-w (2024).

    Google Scholar 

  • Lombardi, F. et al. Cyclooxygenase-2 upregulated by temozolomide in glioblastoma cells is shuttled in extracellular vesicles modifying recipient cell phenotype. Front. Oncol. 12, 933746. https://doi.org/10.3389/fonc.2022.933746 (2022).

    Google Scholar 

  • Lombardi, F. et al. Up-regulation of cyclooxygenase-2 (COX-2) expression by temozolomide (TMZ) in human glioblastoma (GBM) cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23031545 (2022).

    Google Scholar 

  • Schmainda, K. M. et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol. 16, 880–888. https://doi.org/10.1093/neuonc/not216 (2014).

    Google Scholar 

  • Leu, K. et al. Hypervascular tumor volume estimated by comparison to a large-scale cerebral blood volume radiographic atlas predicts survival in recurrent glioblastoma treated with bevacizumab. Cancer Imaging 14, 31. https://doi.org/10.1186/s40644-014-0031-z (2014).

    Google Scholar 

  • Kickingereder, P. et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol. 17, 1139–1147. https://doi.org/10.1093/neuonc/nov028 (2015).

    Google Scholar 

  • Liu, T. T. et al. Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro Oncol. 19, 997–1007. https://doi.org/10.1093/neuonc/now270 (2017).

    Google Scholar 

  • Bennett, I. E. et al. Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin. J. Neurooncol. 131, 321–329. https://doi.org/10.1007/s11060-016-2300-0 (2017).

    Google Scholar 

  • Schmainda, K. M. et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: Results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol. 17, 1148–1156. https://doi.org/10.1093/neuonc/nou364 (2015).

    Google Scholar 

  • Alves, B. et al. High VEGFA expression is associated with improved progression-free survival after bevacizumab treatment in recurrent glioblastoma. Cancers https://doi.org/10.3390/cancers15082196 (2023).

    Google Scholar 

  • Rawat, C. et al. Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci. Rep. 10, 2546. https://doi.org/10.1038/s41598-020-59259-x (2020).

    Google Scholar 

  • Est-Witte, S. E. et al. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater. 113, 279–288. https://doi.org/10.1016/j.actbio.2020.06.042 (2020).

    Google Scholar 

  • Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972. https://doi.org/10.1200/jco.2009.26.3541 (2010).

    Google Scholar 

  • Continue Reading