3D printed porous tantalum loaded with quercetin–curcumin–piperine PLGA nanoparticles for bone defect repair

  • Moraschini, V. et al. Immunological response of allogeneic bone grafting: A systematic review of prospective studies. Journal of Oral Pathology & Medicine 49, 395–403, doi:https://doi.org/10.1111/jop.12998 (2020).

    Google Scholar 

  • Raquel Maia, F., Correlo, V. M., Oliveira, J. M. & Reis, R. L. 535–558 (Elsevier, 2019).

  • Fan, L., Chen, S., Yang, M., Liu, Y. & Liu, J. Metallic materials for bone repair. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202302132 (2024).

    Google Scholar 

  • Duvvuru, M. K. et al. Bone marrow stromal cells interaction with titanium; effects of composition and surface modification. PLOS ONE 14, e0216087, doi:https://doi.org/10.1371/journal.pone.0216087 (2019).

    Google Scholar 

  • Ganesh, N. & Rambabu, S. Finite Element Analysis of Porous Ti-6Al-4V Alloy Structures for Biomedical Applications. J. Phy. Conf. Series 2070, 012224. https://doi.org/10.1088/1742-6596/2070/1/012224 (2021).

    Google Scholar 

  • Huang, G., Pan, S.-T. & Qiu, J.-X. The clinical application of porous tantalum and its new development for bone tissue engineering. Materials 14, 2647, doi:https://doi.org/10.3390/ma14102647 (2021).

    Google Scholar 

  • Levine, B. R., Sporer, S., Poggie, R. A., Della Valle, C. J. & Jacobs, J. J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27, 4671–4681, doi:https://doi.org/10.1016/j.biomaterials.2006.04.041 (2006).

    Google Scholar 

  • Francois, E. L. & Yaszemski, M. J. 761–767 (Elsevier, 2019).

  • Gil Mur, F. J. 267–289 (Elsevier, 2016).

  • Li, G., Chen, L. & Chen, K. Curcumin promotes femoral fracture healing in a rat model by activation of autophagy. Medical Science Monitor 24, 4064–4072, doi:https://doi.org/10.12659/msm.908311 (2018).

    Google Scholar 

  • Bian, W., Xiao, S., Yang, L., Chen, J. & Deng, S. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complementary Med. Ther. https://doi.org/10.1186/s12906-021-03418-8 (2021).

    Google Scholar 

  • Chen, Y.-C. et al. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement. Journal of the Formosan Medical Association 116, 679–688, doi:https://doi.org/10.1016/j.jfma.2017.06.005 (2017).

    Google Scholar 

  • Liu, N. et al. Quercetin-Coating promotes osteogenic Differentiation, osseointegration and Anti-Inflammatory properties of Nano-Topographic modificated 3D-Printed Ti6Al4V implant. Front Bioeng Biotechnol 10, 933135, doi:https://doi.org/10.3389/fbioe.2022.933135 (2022).

    Google Scholar 

  • Tabanelli, R., Brogi, S. & Calderone, V. Improving Curcumin bioavailability: current strategies and future perspectives. Pharmaceutics 13, 1715, doi:https://doi.org/10.3390/pharmaceutics13101715 (2021).

    Google Scholar 

  • Heidari, H. et al. Curcumin-piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytotherapy Research 37, 1462–1487, doi:https://doi.org/10.1002/ptr.7737 (2023).

    Google Scholar 

  • Kumar, P., Singh, S. & Jamwal, S. Neuroprotective potential of Quercetin in combination with Piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regeneration Research 12, 1137, doi:https://doi.org/10.4103/1673-5374.211194 (2017).

    Google Scholar 

  • Danhier, F. et al. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release 161, 505–522, doi:https://doi.org/10.1016/j.jconrel.2012.01.043 (2012).

    Google Scholar 

  • Makadia, H. K. & Siegel, S. J. Poly Lactic-co-Glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397, doi:https://doi.org/10.3390/polym3031377 (2011).

    Google Scholar 

  • Bohrey, S., Chourasiya, V. & Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. https://doi.org/10.1186/s40580-016-0061-2 (2016).

    Google Scholar 

  • Hernández-Giottonini, K. Y. et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Advances 10, 4218–4231, doi:https://doi.org/10.1039/c9ra10857b (2020).

    Google Scholar 

  • Anjana, D. . Development of Curcumin Based Ophthalmic Formulation. American J. Infect. Dis. 8, 41–49. https://doi.org/10.3844/ajidsp.2012.41.49 (2012).

    Google Scholar 

  • Khursheed, R. et al. Development and validation of RP-HPLC method for simultaneous determination of Curcumin and Quercetin in Extracts, marketed Formulations, and Self-Nanoemulsifying drug delivery system. Re:GEN Open 1, 43–52, doi:https://doi.org/10.1089/regen.2021.0021 (2021).

    Google Scholar 

  • Tan, J. M., Bullo, S., Fakurazi, S. & Hussein, M. Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci. Rep. https://doi.org/10.1038/s41598-020-73963-8 (2020).

    Google Scholar 

  • Aldawsari, M. F. et al. Gallic-Acid-Loaded PLGA nanoparticles: A promising transdermal drug delivery system with antioxidant and antimicrobial agents. Pharmaceuticals 16, 1090, doi:https://doi.org/10.3390/ph16081090 (2023).

    Google Scholar 

  • Wu, S.-T. et al. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer https://doi.org/10.1186/s12885-018-4393-7 (2018).

    Google Scholar 

  • Yang, G., Liu, L., Lv, F. & Wang, S. Conjugated polyelectrolyte materials for promoting progenitor cell growth without serum. Sci. Rep. https://doi.org/10.1038/srep01702 (2013).

    Google Scholar 

  • Huang, L. et al. Lactoferrin promotes osteogenesis of MC3T3-E1 cells induced by mechanical strain in an extracellular signal–regulated kinase 1/2–dependent manner. American Journal of Orthodontics and Dentofacial Orthopedics 159, e113-e121, doi:https://doi.org/10.1016/j.ajodo.2020.08.015 (2021).

    Google Scholar 

  • He, S. et al. Nampt promotes osteogenic differentiation and lipopolysaccharide-induced interleukin-6 secretion in osteoblastic MC3T3-E1 cells. Aging 13, 5150–5163, doi:https://doi.org/10.18632/aging.202434 (2021).

    Google Scholar 

  • Guan, M.et al.

     Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles–loaded TiO < sub > 2  nanorods in vitro and in vivo

  • Kara Özenler, A. et al. 3D Bioprinting of mouse pre-osteoblasts and human MSCs using Bioinks consisting of gelatin and decellularized bone particles. Biofabrication 16, 025027, doi:https://doi.org/10.1088/1758-5090/ad2c98 (2024).

    Google Scholar 

  • Hu, J. et al. Design of synthetic collagens that assemble into supramolecular banded fibers as a functional biomaterial testbed. Nat. Commun. https://doi.org/10.1038/s41467-022-34127-6 (2022).

    Google Scholar 

  • Wu, J. et al. Mmu_circ_003795 regulates osteoblast differentiation and mineralization in MC3T3–E1 and MDPC23 by targeting COL15A1. Molecular Medicine Reports 22, 1737–1746, doi:https://doi.org/10.3892/mmr.2020.11264 (2020).

    Google Scholar 

  • Wei, J. et al. Significance and considerations of Establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon 10, e33768, doi:https://doi.org/10.1016/j.heliyon.2024.e33768 (2024).

    Google Scholar 

  • Zhou, L. et al. A rabbit osteochondral defect (OCD) model for evaluation of tissue engineered implants on their biosafety and efficacy in osteochondral repair. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2024.1352023 (2024).

    Google Scholar 

  • Wu, Y., Fan, M., Tan, S., Guo, Q. & Xu, H. Effect of Huoxue Jiegu compound capsule on osteoblast differentiation and fracture healing by regulating the PI3K/Akt/mTOR signaling pathway in rabbits. Heliyon 10, e36175, doi:https://doi.org/10.1016/j.heliyon.2024.e36175 (2024).

    Google Scholar 

  • Meng, Z. L. et al. Reconstruction of large segmental bone defects in rabbit using the Masquelet technique with α-calcium sulfate hemihydrate. J. Orthop. Surg. Res., https://doi.org/10.1186/s13018-019-1235-5 (2019).

    Google Scholar 

  • Zhao, D. & Ma, Z. Application of biomaterials for the repair and treatment of osteonecrosis of the femoral head. Regenerative Biomaterials 7, 1–8, doi:https://doi.org/10.1093/rb/rbz048 (2020).

    Google Scholar 

  • Clutterbuck, A. L., Allaway, D., Harris, P. & Mobasheri, A. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage. F1000Research 2, 27–32. https://doi.org/10.12688/f1000research.2-147.v1 (2013).

    Google Scholar 

  • Wong, R. W. K. & Rabie, A. B. M. Effect of Quercetin on preosteoblasts and bone defects. The Open Orthopaedics Journal 2, 27–32, doi:https://doi.org/10.2174/1874325000802010027 (2008).

    Google Scholar 

  • Woo, J. H. et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and Inhibition of Akt. Carcinogenesis 24, 1199–1208, doi:https://doi.org/10.1093/carcin/bgg082 (2003).

    Google Scholar 

  • K. Wong, R. W. & M. Rabie, A. B. Effect of Quercetin on preosteoblasts and bone defects. The Open Orthopaedics Journal 2, 27–32, doi:https://doi.org/10.2174/1874325000802010027 (2008).

    Google Scholar 

  • Mirshafiee, V., Jiang, W., Sun, B., Wang, X. & Xia, T. Facilitating translational nanomedicine via predictive safety assessment. Molecular Therapy 25, 1522–1530, doi:https://doi.org/10.1016/j.ymthe.2017.03.011 (2017).

    Google Scholar 

  • Bobyn, J. D. et al. Clinical Validation of a Structural Porous Tantalum Biomaterial for Adult Reconstruction. J. Bone Joint Surg. 86, 123–129. https://doi.org/10.2106/00004623-200412002-00017 (2004).

    Google Scholar 

  • Continue Reading