Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.
Google Scholar
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene. 2013;514:1–30.
Google Scholar
Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.
Google Scholar
Leung SK, Jeffries AR, Castanho I, Jordan BT, Moore K, Davies JP, Dempster EL, Bray NJ, O’Neill P, Tseng E, et al. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Reports. 2021;37:110022.
Google Scholar
Mazin P, Xiong J, Liu X, Yan Z, Zhang X, Li M, He L, Somel M, Yuan Y, Phoebe Chen YP, et al. Widespread splicing changes in human brain development and aging. Mol Syst Biol. 2013;9:633.
Google Scholar
Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18:437–51.
Google Scholar
De Paoli-Iseppi R, Gleeson J, Clark MB. Isoform age-splice isoform profiling using long-read technologies. Frontiers in Molecular Biosciences. 2021;8:711733.
Google Scholar
Castaldi PJ, Abood A, Farber CR, Sheynkman GM. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum Mol Genet. 2022;31:R123–36.
Google Scholar
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer. 2022;3:536–46.
Google Scholar
Vitting-Seerup K, Sandelin A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics. 2019;35:4469–71.
Google Scholar
Manuel JM, Guilloy N, Khatir I, Roucou X, Laurent B. Re-evaluating the impact of alternative RNA splicing on proteomic diversity. Front Genet. 2023;14: 1089053.
Google Scholar
Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, et al. The human transcriptome across tissues and individuals. Science. 2015;348:660–5.
Google Scholar
Carvill GL, Engel KL, Ramamurthy A, Cochran JN, Roovers J, Stamberger H, Lim N, Schneider AL, Hollingsworth G, Holder DH, et al. Aberrant inclusion of a poison exon causes Dravet syndrome and related SCN1A-associated genetic epilepsies. Am J Hum Genet. 2018;103:1022–9.
Google Scholar
Lara-Pezzi E, Desco M, Gatto A, Gómez-Gaviro MV. Neurogenesis: regulation by alternative splicing and related posttranscriptional processes. Neuroscientist. 2017;23:466–77.
Google Scholar
Rehm J, Shield KD. Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep. 2019;21:10.
Google Scholar
Sandell C, Kjellberg A, Taylor RR. Participating in diagnostic experience: adults with neuropsychiatric disorders. Scand J Occup Ther. 2013;20:136–42.
Google Scholar
Bray NJ, O’Donovan MC. The genetics of neuropsychiatric disorders. Brain Neurosci Adv. 2018;2:2398212818799271.
Google Scholar
Medalia A, Saperstein AM, Hansen MC, Lee S. Personalised treatment for cognitive dysfunction in individuals with schizophrenia spectrum disorders. Neuropsychol Rehabil. 2018;28:602–13.
Google Scholar
Mora C, Zonca V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn. 2018;18:513–29.
Google Scholar
Anney RJL, Ripke S, Anttila V, Grove J, Holmans P, Huang H, Klei L, Lee PH, Medland SE, Neale B, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Molecular Autism. 2017;8:21.
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.
Google Scholar
Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, Legge SE, Bishop S, Cameron D, Hamshere ML, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.
Google Scholar
Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.
Google Scholar
Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, Mattheisen M, Wang Y, Coleman JRI, Gaspar HA, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.
Google Scholar
Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, Bryois J, Chen C-Y, Dennison CA, Hall LS, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.
Google Scholar
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM, Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.
Google Scholar
Sey NY, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, Brennand KJ, Akbarian S, Won H. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–93.
Google Scholar
Yang A, Chen J, Zhao XM. nMAGMA: a network-enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. Briefings in bioinformatics. 2021;22:bbaa298.
Google Scholar
Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ, Thapar A, Goddard ME, Witte JS, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.
Google Scholar
Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, Straub RE, Ye T, Colantuoni C, Herman MM, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. Journal of Neuroscience. 2011;31:11088–95.
Google Scholar
Wang Z, Chen W, Cao Y, Dou Y, Fu Y, Zhang Y, Luo X, Kang L, Liu N, Shi YS, et al. An independent, replicable, functional and significant risk variant block at intron 3 of CACNA1C for schizophrenia. Aust N Z J Psychiatry. 2022;56:385–97.
Google Scholar
Steijger T, Abril JF, Engström PG, Kokocinski F, Hubbard TJ, Guigó R, Harrow J, Bertone P. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods. 2013;10:1177–84.
Google Scholar
Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:1–16.
Glinos DA, Garborcauskas G, Hoffman P, Ehsan N, Jiang L, Gokden A, Dai X, Aguet F, Brown KL, Garimella K. Transcriptome variation in human tissues revealed by long-read sequencing. Nature. 2022;608:353–9.
Google Scholar
Chau KK, Zhang P, Urresti J, Amar M, Pramod AB, Chen J, Thomas A, Corominas R, Lin GN, Iakoucheva LM. Full-length isoform transcriptome of the developing human brain provides further insights into autism. Cell reports. 2021;36:109631.
Google Scholar
Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, Weinberger DR, Harrison PJ, Haerty W, Tunbridge EM. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry. 2020;25:37–47.
Google Scholar
Ma L, Semick SA, Chen Q, Li C, Tao R, Price AJ, Shin JH, Jia Y, Brandon NJ, Cross AJ, et al. Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Mol Psychiatry. 2020;25:831–43.
Google Scholar
De Paoli-Iseppi R, Joshi S, Gleeson J, Joseph Prawer YD, You Y, Agarwal R, Li A, Hull A, Whitehead EM, Seo Y, et al. IsoLamp: isoform identification and quantification from long-read amplicon sequencing data. Zenodo. 2024. https://doi.org/10.5281/zenodo.16533873.
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Google Scholar
Chen Y, Sim A, Wan YK, Yeo K, Lee JJX, Ling MH, Love MI, Göke J. Context-aware transcript quantification from long-read RNA-seq data with Bambu. Nat Methods. 2023;20:1187–1195.
Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, Brooks AN. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun. 2020;11:1438.
Google Scholar
Tian L, Jabbari JS, Thijssen R, Gouil Q, Amarasinghe SL, Voogd O, Kariyawasam H, Du MRM, Schuster J, Wang C, et al. Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome Biol. 2021;22:310.
Google Scholar
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:1–13.
Kingsbury AE, Foster OJF, Nisbet AP, Cairns N, Bray L, Eve DJ, Lees AJ, David Marsden C. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Mol Brain Res. 1995;28:311–8.
Google Scholar
Wan CY, Davis J, Chauhan M, Gleeson J, Prawer Yair DJ, De Paoli-Iseppi R, Wells Christine A, Choi J, Clark Michael B. IsoVis – a webserver for visualization and annotation of alternative RNA isoforms. Nucleic Acids Res. 2024;52:W341–7.
Google Scholar
Pardo-Palacios FJ, Arzalluz-Luque A, Kondratova L, Salguero P, Mestre-Tomás J, Amorín R, Estevan-Morió E, Liu T, Nanni A, McIntyre L, et al. Sqanti3: curation of long-read transcriptomes for accurate identification of known and novel isoforms. Nat Methods. 2024;21:793–7.
Google Scholar
Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, del Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K, et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018;28:396–411.
Google Scholar
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–8.
Google Scholar
Pihl R, Jensen RK, Poulsen EC, Jensen L, Hansen AG, Thøgersen IB, Dobó J, Gál P, Andersen GR, Enghild JJ. ITIH4 acts as a protease inhibitor by a novel inhibitory mechanism. Science advances. 2021;7:eaba7381.
Google Scholar
Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Structural mechanism of ligand activation in human GABAB receptor. Nature. 2013;504:254–9.
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Google Scholar
Schreiner D, Nguyen T-M, Russo G, Heber S, Patrignani A, Ahrné E, Scheiffele P. Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins. Neuron. 2014;84:386–98.
Google Scholar
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.
Google Scholar
Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.
Google Scholar
Kim M, Vo DD, Jops CT, Wen C, Patowary A, Bhattacharya A, Yap CX, Zhou H, Gandal MJ. Multivariate variance components analysis uncovers genetic architecture of brain isoform expression and novel psychiatric disease mechanisms. medRxiv 2022:2022.2010. 2018.22281204.
Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5:1–15.
Sarantopoulou D, Brooks TG, Nayak S, Mrčela A, Lahens NF, Grant GR. Comparative evaluation of full-length isoform quantification from RNA-Seq. BMC Bioinformatics. 2021;22:1–24.
Hu Y, Fang L, Chen X, Zhong JF, Li M, Wang K. LIQA: long-read isoform quantification and analysis. Genome Biol. 2021;22:182.
Google Scholar
Zhang C, Zhang B, Lin L-L, Zhao S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics. 2017;18:1–11.
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion (DRG) generated from long read sequencing. bioRxiv 2023:2023.2010. 2028.564535.
Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1 ATG13 FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–305.
Google Scholar
Alers S, Löffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K, Campbell DG, Fehrenbacher B, Schaller M, Wesselborg S, Stork B. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy. 2011;7:1424–33.
Google Scholar
Leppek K, Das R, Barna M. Functional 5′ UTR mrna structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19:158–74.
Google Scholar
Baum ML, Wilton DK, Fox RG, Carey A, Hsu Y-HH, Hu R, Jäntti HJ, Fahey JB, Muthukumar AK, Salla N, et al. CSMD1 regulates brain complement activity and circuit development. Brain Behav Immun. 2024;119:317–332.
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.
Google Scholar
Imbrici P, Conte Camerino D, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Frontiers in Genetics. 2013;4:76.
Google Scholar
Guzman RE, Miranda-Laferte E, Franzen A, Fahlke C. Neuronal ClC-3 splice variants differ in subcellular localizations, but mediate identical transport functions. J Biol Chem. 2015;290:25851–62.
Google Scholar
Duncan AR, Polovitskaya MM, Gaitán-Peñas H, Bertelli S, VanNoy GE, Grant PE, O’Donnell-Luria A, Valivullah Z, Lovgren AK, England EM, et al. Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. Am J Hum Genet. 2021;108:1450–65.
Google Scholar
Roca-Umbert A, Garcia-Calleja J, Vogel-González M, Fierro-Villegas A, Ill-Raga G, Herrera-Fernández V, Bosnjak A, Muntané G, Gutiérrez E, Campelo F, et al. Human genetic adaptation related to cellular zinc homeostasis. PLoS Genet. 2023;19: e1010950.
Google Scholar
Perez Y, Shorer Z, Liani-Leibson K, Chabosseau P, Kadir R, Volodarsky M, Halperin D, Barber-Zucker S, Shalev H, Schreiber R, et al. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain. 2017;140:928–39.
Google Scholar
Willekens J, Runnels LW. Impact of zinc transport mechanisms on embryonic and brain development. Nutrients. 2022;14: 2526.
Google Scholar
Lee J, Joo E-J, Lim H-J, Park J-M, Lee KY, Park A, Seok A, Lee H, Kang H-G. Proteomic analysis of serum from patients with major depressive disorder to compare their depressive and remission statuses. Psychiatry Investig. 2015;12: 249.
Google Scholar
Piñeiro M, Andrés M, Iturralde M, Carmona S, Hirvonen J, Pyörälä S, Heegaard PMH, Tjørnehøj K, Lampreave F, Piñeiro A, Alava MA. ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection. Infect Immun. 2004;72:3777–82.
Google Scholar
Prawer YD, Gleeson J, De Paoli-Iseppi R, Clark MB. Pervasive effects of RNA degradation on Nanopore direct RNA sequencing. NAR Genomics and Bioinformatics. 2023;5:lqad060.
Google Scholar
Harrison PJ, Heath PR, Eastwood SL, Burnet PWJ, McDonald B, Pearson RCA. The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett. 1995;200:151–4.
Google Scholar
Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D, Zhu Q, Knight R, Albertsen M. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat Methods. 2021;18:165–9.
Google Scholar
Hess JL, Tylee DS, Mattheisen M, Børglum AD, Als TD, Grove J, Werge T, Mortensen PB. A polygenic resilience score moderates the genetic risk for schizophrenia. Mol Psychiatry. 2021;26:800–15.
Google Scholar
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genomics Bioinform. 2021;3:lqab044.
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, et al. The status of the human gene catalogue. Nature. 2023;622:41–7.
Google Scholar
Frankish A, Carbonell-Sala S, Diekhans M, Jungreis I, Loveland Jane E, Mudge Jonathan M, Sisu C, Wright James C, Arnan C, Barnes I, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2022;51:D942–9.
Google Scholar
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2018;47:D1005–12.
Google Scholar
Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs Angie S, Lee Brian T, et al. The UCSC genome browser database: 2023 update. Nucleic Acids Res. 2022;51:D1188–95.
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71–4.
Google Scholar
De Paoli-Iseppi R, Clark MB. A guide to long-range PCR for Nanopore sequencing. Protocols.io. 2025. https://doi.org/10.17504/protocols.io.n2bvj9rdxlk5/v2.
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley: Lawrence Berkeley National Lab.(LBNL); 2014.
Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47: 11.12. 11–11.12. 34.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.
Google Scholar
Pertea G, Pertea M. GFF utilities: GffRead and GffCompare. F1000Research. 2020;9:9.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:1–11.
Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89.
Google Scholar
De Paoli-Iseppi R, Joshi S, Gleeson J, Joseph Prawer YD, You Y, Agarwal R, Li A, Hull A, Whitehead EM, Seo Y, et al. Analysis of neuropsychiatric risk gene isoforms in the brain. Datasets. PRIDE. 2025. https://www.ebi.ac.uk/pride/archive/projects/PXD063836.
Perez-Riverol Y, Bandla C, Kundu Deepti J, Kamatchinathan S, Bai J, Hewapathirana S, John Nithu S, Prakash A, Walzer M, Wang S, Vizcaíno Juan A. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2024;53:D543–53.
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.
Google Scholar
De Paoli-Iseppi R, Joshi S, Gleeson J, Joseph Prawer YD, You Y, Agarwal R, Li A, Hull A, Whitehead EM, Seo Y, et al. RNA isoform repertoire of neuropsychiatric risk genes in human brain. Datasets. EGA; 2024. https://www.ega-archive.org/studies/EGAS00001007744.
De Paoli-Iseppi R, Joshi S, Gleeson J, Joseph Prawer YD, You Y, Agarwal R, Li A, Hull A, Whitehead EM, Seo Y, et al. Neuropsychiatric risk RNA isoform data. Zenodo. 2025. https://doi.org/10.5281/zenodo.16416952.