Behavioural predictability in chickens in response to anxiogenic stimuli is influenced by maternal corticosterone levels during egg formation

  • Glover, V. Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. In Perinatal Programming of Neurodevelopment (ed. Antonelli, MC.) 269–283. (New York, NY: Springer, 2015). https://doi.org/10.1007/978-1-4939-1372-5_13

  • Welberg, L. & a. M, Seckl JR.,. Prenatal Stress, Glucocorticoids and the Programming of the Brain. J. Neuroendocrinol. 13, 113–128. https://doi.org/10.1111/j.1365-2826.2001.00601.x (2001).

    Article 
    PubMed 

    Google Scholar 

  • Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Van den Bergh, B. R. H. et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 117, 26–64. https://doi.org/10.1016/j.neubiorev.2017.07.003 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Weinstock, M. The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086. https://doi.org/10.1016/j.neubiorev.2008.03.002 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. https://doi.org/10.1038/nrn2639 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Schoech, S. J., Rensel, M. A. & Heiss, R. S. Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Curr. Zool. 57, 514–530. https://doi.org/10.1093/czoolo/57.4.514 (2011).

    Article 

    Google Scholar 

  • Westneat, D. F., Wright, J. & Dingemanse, N. J. The biology hidden inside residual within-individual phenotypic variation. Biol. Rev. 90, 729–743. https://doi.org/10.1111/brv.12131 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334. https://doi.org/10.1016/j.anbehav.2012.02.017 (2012).

    Article 

    Google Scholar 

  • Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629. https://doi.org/10.1086/673213 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Method. Ecol. Evol. 6, 27–37. https://doi.org/10.1111/2041-210X.12281 (2015).

    Article 

    Google Scholar 

  • Westneat, D. F. et al. Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird. J. Anim. Ecol. 83, 876–887. https://doi.org/10.1111/1365-2656.12191 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783. https://doi.org/10.1016/j.anbehav.2008.12.022 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westneat, D. F., Hatch, M. I., Wetzel, D. P. & Ensminger, A. L. Individual variation in parental care reaction norms: Integration of personality and plasticity. Am. Nat. 178, 652–667. https://doi.org/10.1086/662173 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Briffa, M. Plastic proteans: Reduced predictability in the face of predation risk in hermit crabs. Biol. Lett. 9, 20130592. https://doi.org/10.1098/rsbl.2013.0592 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kermany, N., Martin, J. G. A. & Careau, V. Individual (co)variation in locomotor activity, temporal plasticity, and predictability within a novel environment. Behav. Ecol. Sociobiol. 77, 93. https://doi.org/10.1007/s00265-023-03365-z (2023).

    Article 

    Google Scholar 

  • Chang, C., Teo, H. Y., Norma-Rashid, Y. & Li, D. Predator personality and prey behavioural predictability jointly determine foraging performance. Sci. Rep. 7, 40734. https://doi.org/10.1038/srep40734 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Highcock, L. & Carter, A. J. Intraindividual variability of boldness is repeatable across contexts in a wild lizard. PLoS ONE https://doi.org/10.1371/journal.pone.0095179 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horváth, G. et al. Roll with the fear: Environment and state dependence of pill bug (Armadillidium vulgare) personalities. Sci. Nat. 106, 7. https://doi.org/10.1007/s00114-019-1602-4 (2019).

    Article 

    Google Scholar 

  • Beyts, C., Martin, JGA., Colegrave, N., Walsh, P. Food availability early in life impacts among and within individual variation in behaviour. 2023.02.23.529667. https://doi.org/10.1101/2023.02.23.529667 (2023).

  • Winter, G., Wirsching, L. & Schielzeth, H. Condition dependence of (un)predictability in escape behavior of a grasshopper species. Behav. Ecol. Off. J. Int. Soc. Behav. Ecol. 34, 741–750. https://doi.org/10.1093/beheco/arad047 (2023).

    Article 

    Google Scholar 

  • Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, 169–178. https://doi.org/10.1007/s10336-007-0175-8 (2007).

    Article 

    Google Scholar 

  • Henriksen, R., Groothuis, T. G. & Rettenbacher, S. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PLoS ONE 6, e23824. https://doi.org/10.1371/journal.pone.0023824 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henriksen, R., Rettenbacher, S. & Groothuis, T. G. G. Maternal corticosterone elevation during egg formation in chickens (Gallus gallus domesticus) influences offspring traits, partly via prenatal undernutrition. Gen. Comp. Endocrinol. 191, 83–91. https://doi.org/10.1016/j.ygcen.2013.05.028 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069. https://doi.org/10.3390/ijms21218069 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stingo-Hirmas, D. et al. Proportional cerebellum size predicts fear habituation in chickens. Front. Physiol. https://doi.org/10.3389/fphys.2022.826178 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cottle, JJ., Boivin, J., Domar, AD. The effects of stress on conception and pregnancy. In How to Improve Preconception Health to Maximize IVF Success (eds Kovacs, G., Norman, R.) 18–29 (Cambridge: Cambridge University Press, 2018) https://doi.org/10.1017/9781316727119.003

  • Geraghty, AC., Kaufer, D. Glucocorticoid regulation of reproduction. In Glucocorticoid Signaling: From Molecules to Mice to Man (eds Wang, J.C.& Harris, C.) 253–278 (New York, NY: Springer 2015). (https://doi.org/10.1007/978-1-4939-2895-8_11)

  • Odihambo Mumma, J., Thaxton, J. P., Vizzier-Thaxton, Y. & Dodson, W. L. Physiological stress in laying hens1. Poult. Sci. 85, 761–769. https://doi.org/10.1093/ps/85.4.761 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Shini, S., Shini, A. & Huff, G. R. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol. Behav. 98, 73–77. https://doi.org/10.1016/j.physbeh.2009.04.012 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Adriaensen, H. et al. How egg storage duration prior to incubation impairs egg quality and chicken embryonic development: Contribution of imaging technologies. Front. Physiol. https://doi.org/10.3389/fphys.2022.902154 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fasenko, G. M. Egg storage and the embryo. Poult. Sci. 86, 1020–1024. https://doi.org/10.1093/ps/86.5.1020 (2007).

    Article 
    PubMed 

    Google Scholar 

  • King ori, A. Review of the factors that influence egg fertility and hatchabilty in poultry. Int. J. Poult. Sci. 10, 483–492. https://doi.org/10.3923/ijps.2011.483.492 (2011).

    Article 

    Google Scholar 

  • Rocha, J. S. R. et al. Negative effects of fertile egg storage on the egg and the embryo and suggested hatchery management to minimise such problems. World. Poult. Sci. J. 69, 35–44. https://doi.org/10.1017/S0043933913000044 (2013).

    Article 

    Google Scholar 

  • Gilbert, A. B., Perry, M. M., Waddington, D. & Hardie, M. A. Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (Gallus domesticus). J. Reprod. Fertil. 69, 221–227. https://doi.org/10.1530/jrf.0.0690221 (1983).

    Article 
    PubMed 

    Google Scholar 

  • Johnson, AL. Chapter 28 – Reproduction in the female. In Sturkie’s Avian Physiology 4th edn, (ed. Scanes, C.G.) 635–665 (San Diego: Academic Press 2015). https://doi.org/10.1016/B978-0-12-407160-5.00028-2

  • Lovell, T., Gladwell, R., Groome, N. & Knight, P. Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J. Endocrinol. 177, 45–55. https://doi.org/10.1677/joe.0.1770045 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 7464–7475 (2023). https://doi.org/10.1109/CVPR52729.2023.00721

  • R Core Team. R: A Language and Environment for Statistical Computing (2023).

  • Sturman, O. et al. Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45, 1942–1952. https://doi.org/10.1038/s41386-020-0776-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Bari, M. S., Allen, S. S., Mesken, J., Cohen-Barnhouse, A. M. & Campbell, D. L. M. Relationship between range use and fearfulness in free-range hens from different rearing enrichments. Animal 11, 300. https://doi.org/10.3390/ani11020300 (2021).

    Article 

    Google Scholar 

  • Campbell, D. L. M. et al. An attention bias test to assess anxiety states in laying hens. PeerJ https://doi.org/10.7717/peerj.7303 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perals, D., Griffin, A. S., Bartomeus, I. & Sol, D. Revisiting the open-field test: What does it really tell us about animal personality?. Anim. Behav. 123, 69–79. https://doi.org/10.1016/j.anbehav.2016.10.006 (2017).

    Article 

    Google Scholar 

  • Balážová, L. & Baranyiová, E. Broiler response to open field test in early ontogeny. Acta Vet. Brno 79, 19–26. https://doi.org/10.2754/avb201079010019 (2010).

    Article 

    Google Scholar 

  • Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374. https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Nielsen, B. L. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains. Animal https://doi.org/10.1017/S1751731112000353 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Gould, T.D., Dao, D.T., Kovacsics, C.E. The open field test. In Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed Gould, T.D.) 1–20 (Totowa, NJ: Humana Press 2009). https://doi.org/10.1007/978-1-60761-303-9_1

  • Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 463, 3–33. https://doi.org/10.1016/S0014-2999(03)01272-X (2003).

    Article 
    PubMed 

    Google Scholar 

  • Peterson, R. A. Finding optimal normalizing transformations via bestNormalize. R J. 13, 310. https://doi.org/10.32614/RJ-2021-041 (2021).

    Article 

    Google Scholar 

  • Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327. https://doi.org/10.1080/02664763.2019.1630372 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Lee, Y. & Nelder, J. A. Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Methodol. 58, 619–656. https://doi.org/10.1111/j.2517-6161.1996.tb02105.x (1996).

    Article 
    MathSciNet 

    Google Scholar 

  • Lee, Y. & Nelder, J. A. Double hierarchical generalized linear models (with discussion). J. R. Stat. Soc. Ser. C Appl. Stat. 55, 139–185. https://doi.org/10.1111/j.1467-9876.2006.00538.x (2006).

    Article 

    Google Scholar 

  • Rönnegård, L., Shen, X. & Alam, M. Hglm: A package for fitting hierarchical generalized linear models. R J. 2, 20–28. https://doi.org/10.32614/rj-2010-009 (2010).

    Article 

    Google Scholar 

  • Lee, Y., Nelder, J. A. & Pawitan, Y. Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood, Second Edition 2nd edn. (Chapman and Hall/CRC, 2018). https://doi.org/10.1201/9781315119953.

    Book 

    Google Scholar 

  • Mitchell, D. J., Fanson, B. G., Beckmann, C. & Biro, P. A. Towards powerful experimental and statistical approaches to study intraindividual variability in labile traits. R. Soc. Open Sci. 3, 160352. https://doi.org/10.1098/rsos.160352 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rönnegård, L., Shen, X., Alam, M. The hglm package ( Version 2 . 0 ). Update , 1–36 (2014).

  • Glover, V., O’Connor, T. G. & O’Donnell, K. Prenatal stress and the programming of the HPA axis. Neurosci. Biobehav. Rev. 35, 17–22. https://doi.org/10.1016/j.neubiorev.2009.11.008 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Bosch, O. J., Krömer, S. A. & Neumann, I. D. Prenatal stress: Opposite effects on anxiety and hypothalamic expression of vasopressin and corticotropin-releasing hormone in rats selectively bred for high and low anxiety. Eur. J. Neurosci. 23, 541–551. https://doi.org/10.1111/j.1460-9568.2005.04576.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • Cannizzaro, C. et al. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: Interaction with a brief, daily maternal separation. Behav. Brain Res. 169, 128–136. https://doi.org/10.1016/j.bbr.2005.12.010 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Pallarés, M. E., Scacchi Bernasconi, P. A., Feleder, C. & Cutrera, R. A. Effects of prenatal stress on motor performance and anxiety behavior in Swiss mice. Physiol. Behav. 92, 951–956. https://doi.org/10.1016/j.physbeh.2007.06.021 (2007).

    Article 
    PubMed 

    Google Scholar 

  • van den Hove, D. L. A. et al. Prenatal restraint stress and long-term affective consequences. Dev. Neurosci. 27, 313–320. https://doi.org/10.1159/000086711 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Johnsson, M., Williams, M. J., Jensen, P. & Wright, D. Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetic 202, 327–340. https://doi.org/10.1534/genetics.115.179010 (2016).

    Article 

    Google Scholar 

  • Terashima, M., Velasco, V. V., Goto, N., Tsudzuki, M. & Ishikawa, A. Differences in innate fear behaviour in native Japanese chickens. Br. Poult. Sci. 64, 448–455. https://doi.org/10.1080/00071668.2023.2207735 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tiemann, I., Becker, S., Büscher, W. & Meuser, V. Exploring animal genetic resources of the domestic chicken and their behavior in the open field. J. Appl. Poult. Res. 31, 100237. https://doi.org/10.1016/j.japr.2022.100237 (2022).

    Article 

    Google Scholar 

  • Tazumi, T. et al. Effects of prenatal maternal stress by repeated cold environment on behavioral and emotional development in the rat offspring. Behav. Brain Res. 162, 153–160. https://doi.org/10.1016/j.bbr.2005.03.006 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Davis, K. A., Schmidt, J. B., Doescher, R. M. & Satterlee, D. G. Fear responses of offspring from divergent quail stress response line hens treated with corticosterone during egg formation1. Poult. Sci. 87, 1303–1313. https://doi.org/10.3382/ps.2008-00083 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Götz, A. A. & Stefanski, V. Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring. Physiol. Behav. 90, 108–115. https://doi.org/10.1016/j.physbeh.2006.09.014 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Salari, A.-A., Fatehi-Gharehlar, L., Motayagheni, N. & Homberg, J. R. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav. Brain Res. 311, 354–367. https://doi.org/10.1016/j.bbr.2016.05.062 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Vallée, M. et al. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626–2636. https://doi.org/10.1523/JNEUROSCI.17-07-02626.1997 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Oers, K., de Jong, G., van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206 (2005).

    Article 

    Google Scholar 

  • Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805. https://doi.org/10.1111/JEB.13048 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652. https://doi.org/10.1111/JEB.13601 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Huizink, A. C. & de Rooij, S. R. Prenatal stress and models explaining risk for psychopathology revisited: Generic vulnerability and divergent pathways. Dev. Psychopathol. 30, 1041–1062. https://doi.org/10.1017/S0954579418000354 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Klaassen, H. et al. Behavioural ecology meets oncology: Quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc. R. Soc. B Biol. Sci. 291, 20232666. https://doi.org/10.1098/rspb.2023.2666 (2024).

    Article 

    Google Scholar 

  • Velasque, M. & Briffa, M. The opposite effects of routine metabolic rate and metabolic rate during startle responses on variation in the predictability of behaviour in hermit crabs. Behaviour 153, 1545–1566. https://doi.org/10.1163/1568539X-00003371 (2016).

    Article 

    Google Scholar 

  • Biro, P. A. et al. Metabolic scope as a proximate constraint on individual behavioral variation: Effects on personality, plasticity, and predictability. Am. Nat. 192, 142–154. https://doi.org/10.1086/697963 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Eberle, C., Fasig, T., Brüseke, F. & Stichling, S. Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: A systematic scoping review. PLoS ONE 16, e0245386. https://doi.org/10.1371/journal.pone.0245386 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westneat, D. F., Stewart, I. R. K. & Hatch, M. I. Complex interactions among temporal variables affect the plasticity of clutch size in a multi-brooded bird. Ecology 90, 1162–1174. https://doi.org/10.1890/08-0698.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Favati, A., Zidar, J., Thorpe, H., Jensen, P. & Løvlie, H. The ontogeny of personality traits in the red junglefowl, Gallus gallus. Behav. Ecol. 27, 484–493. https://doi.org/10.1093/beheco/arv177 (2016).

    Article 

    Google Scholar 

  • Schuett, W. & Dall, S. R. X. Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim. Behav. 77, 1041–1050. https://doi.org/10.1016/j.anbehav.2008.12.024 (2009).

    Article 

    Google Scholar 

  • Strickland, K. & Frère, C. H. Predictable males and unpredictable females: Repeatability of sociability in eastern water dragons. Behav. Ecol. 29, 236–243. https://doi.org/10.1093/beheco/arx148 (2018).

    Article 

    Google Scholar 

  • Brand, J. A. et al. Sex differences in the predictability of risk-taking behavior. Behav. Ecol. 34, 108–116. https://doi.org/10.1093/beheco/arac105 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Scherer, U., Kuhnhardt, M. & Schuett, W. Predictability is attractive: Female preference for behaviourally consistent males but no preference for the level of male aggression in a bi-parental cichlid. PLoS ONE 13, e0195766. https://doi.org/10.1371/journal.pone.0195766 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brand, J. A., Aich, U., Yee, W. K. W., Wong, B. B. M. & Dowling, D. K. Sexual selection increases male behavioral consistency in drosophila melanogaster. Am. Nat. 203, 713–725. https://doi.org/10.1086/729600 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Jones, K. A., Jackson, A. L. & Ruxton, G. D. Prey jitters; Protean behaviour in grouped prey. Behav. Ecol. 22, 831–836. https://doi.org/10.1093/beheco/arr062 (2011).

    Article 

    Google Scholar 

  • Wolf, M., Van Doorn, G. S. & Weissing, F. J. On the coevolution of social responsiveness and behavioural consistency. Proc. R. Soc. B Biol. Sci. 278, 440–448. https://doi.org/10.1098/rspb.2010.1051 (2010).

    Article 

    Google Scholar 

  • Richardson, G., Dickinson, P., Burman, O. H. P. & Pike, T. W. Unpredictable movement as an anti-predator strategy. Proc. R. Soc. B Biol. Sci. 285, 20181112. https://doi.org/10.1098/rspb.2018.1112 (2018).

    Article 

    Google Scholar 

  • Stingo-Hirmas, Rönnegård, Cunha, Wright, Henriksen Behavioural predictability in chickens in response to anxiogenic stimuli is influenced by maternal corticosterone levels during egg formation. Dryad 10.5061/dryad.k0p2ngfjr (2025).

  • Continue Reading