Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31:587–99.
Google Scholar
Van Hemel JO, Eussen HJ. Interchromosomal insertions. Identification of five cases and a review. Hum Genet. 2000;107:415–32.
Google Scholar
Kang SH, Shaw C, Ou Z, Eng PA, Cooper ML, Pursley AN, et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010;152a:1111–26.
Google Scholar
Madan K, Menko FH. Intrachromosomal insertions: a case report and a review. Hum Genet. 1992;89:1–9.
Google Scholar
Nowakowska BA, de Leeuw N, Ruivenkamp CA, Sikkema-Raddatz B, Crolla JA, Thoelen R, et al. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur J Hum Genet. 2012;20:166–70.
Google Scholar
Zhang S, Pei Z, Xiao M, Zhou J, Hu B, Zhu S, et al. Comprehensive preimplantation genetic testing for balanced insertional translocation carriers. J Med Genet. 2024;61:794–802.
Google Scholar
Ryu SW, Yoon JH, Kim DW, Han B, Han H, Han J, et al. Identification of a complex intrachromosomal inverted insertion in the long arm of chromosome 9 as a cause of tuberous sclerosis complex in a Korean family. Mol Genet Genom Med. 2024;12:e2330.
Google Scholar
Yamamoto T, Wilsdon A, Joss S, Isidor B, Erlandsson A, Suri M, et al. An emerging phenotype of Xq22 microdeletions in females with severe intellectual disability, hypotonia and behavioral abnormalities. J Hum Genet. 2014;59:300–6.
Google Scholar
Yamamoto T, Shimojima K, Shimada S, Yokochi K, Yoshitomi S, Yanagihara K, et al. Clinical impacts of genomic copy number gains at Xq28. Hum Genome Var. 2014;1:14001.
Google Scholar
Shimojima K, Sugiura C, Takahashi H, Ikegami M, Takahashi Y, Ohno K, et al. Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res. 2010;89:303–9.
Google Scholar
Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, et al. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet. 2020;139:1555–63.
Google Scholar
Hastings R, Moore S, Chia N. An international system for human cytogenomic nomenclature. Basel: Karger; 2024.
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet. 2022;15:23.
Google Scholar
Atack E, Fairtlough H, Smith K, Balasubramanian M. A novel (paternally inherited) duplication 13q31.3q32.3 in a 12-year-old patient with facial dysmorphism and developmental delay. Mol Syndromol. 2014;5:245–50.
Google Scholar
Fritz B, Müller-Navia J, Hillig U, Köhler M, Aslan M, Rehder H. Trisomy 2q35-q37 due to insertion of 2q material into 17q25: clinical, cytogenetic, and molecular cytogenetic characterization. Am J Med Genet. 1999;87:297–301.
Google Scholar
Liehr T, Schreyer I, Kuechler A, Manolakos E, Singer S, Dufke A, et al. Parental origin of deletions and duplications – about the necessity to check for cryptic inversions. Mol Cytogenet. 2018;11:20.
Google Scholar
Shimada S, Shimojima K, Okamoto N, Sangu N, Hirasawa K, Matsuo M, et al. Microarray analysis of 50 patients reveals the critical chromosomal regions responsible for 1p36 deletion syndrome-related complications. Brain Dev. 2015;37:515–26.
Google Scholar
Domínguez MG, Rivera H, Aguilar-Lemarroy A, Jave-Suarez LF, Ramírez-Velazco A, González-Ramos IA, et al. Two familial intrachromosomal insertions with maternal dup(6)(p22.3p25.3) or dup(2)(q24.2q32.1) in recombinant offspring. Clin Dysmorphol. 2017;26:209–16.
Google Scholar
Hegmann KM, Spikes AS, Orr-Urtreger A, Shaffer LG. Segregation of a paternal insertional translocation results in partial 4q monosomy or 4q trisomy in two siblings. Am J Med Genet. 1996;61:10–15.
Google Scholar
Collinson MN, Roberts SE, Crolla JA, Dennis NR. A familial balanced inverted insertion ins(15)(q15q13q11.2) producing Prader-Willi syndrome, Angelman syndrome and duplication of 15q11.2-q13 in a single family: Importance of differentiation from a paracentric inversion. Am J Med Genet A. 2004;126a:27–32.
Google Scholar
Blanchard M, Dubourg C, Pasquier L, Odent S, Lucas J, Quélin C, et al. Postnatal diagnosis of 9q interstitial imbalances involving PTCH1, resulting from a familial intrachromosomal insertion. Eur J Med Genet. 2014;57:195–9.
Google Scholar
Ardalan A, Prieur M, Choiset A, Turleau C, Goutieres F, Girard-Orgeolet S. Intrachromosomal insertion mimicking a pericentric inversion: molecular cytogenetic characterization of a three break rearrangement of chromosome 20. Am J Med Genet A. 2005;138a:288–93.
Google Scholar
Dong Z, Chau MHK, Zhang Y, Dai P, Zhu X, Leung TY, et al. Deciphering the complexity of simple chromosomal insertions by genome sequencing. Hum Genet. 2021;140:361–80.
Google Scholar
Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17:224–38.
Google Scholar
Gu S, Szafranski P, Akdemir ZC, Yuan B, Cooper ML, Magriñá MA, et al. Mechanisms for complex chromosomal insertions. PLoS Genet. 2016;12:e1006446.
Google Scholar
Kato T, Ouchi Y, Inagaki H, Makita Y, Mizuno S, Kajita M, et al. Genomic characterization of chromosomal insertions: insights into the mechanisms underlying chromothripsis. Cytogenet Genome Res. 2017;153:1–9.
Google Scholar