Tailoring polymer electrolyte solvation for 600 Wh kg−1 lithium batteries

  • Luo, D. et al. A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8, 1078–1087 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deysher, G. et al. Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 9, 1161–1172 (2024).

    ADS 
    CAS 

    Google Scholar 

  • Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wan, H., Wang, Z., Zhang, W., He, X. & Wang, C. Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Enyuan, H. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article 

    Google Scholar 

  • Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sharpe, R. et al. Redox chemistry and the role of trapped molecular O2 in Li-rich disordered rocksalt oxyfluoride cathodes. J. Am. Chem. Soc. 142, 21799–21809 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albertus, P. et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. 6, 1399–1404 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, Q., Yang, Y., Yu, X. & Li, H. A 700 W·h·kg−1 rechargeable pouch type lithium battery. Chinese Phys. Lett. 40, 048201 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, B. et al. Achieving the high capacity and high stability of Li‐rich oxide cathode in garnet‐based solid‐state battery. Angew. Chem. Int. Ed. 63, e202315856 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kong, W.-J. et al. From liquid to solid-state batteries: Li-rich Mn-based layered oxides as emerging cathodes with high energy density. Adv. Mater. 36, 2310738 (2024).

    Article 
    CAS 

    Google Scholar 

  • Sun, S. et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries. Sci. Adv. 8, eadd5189 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. et al. In situ polymerization of 1,3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries. Energy Environ. Sci. 16, 6110–6119 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhu, J. et al. Long-cycling and high-voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes. Angew. Chem. Int. Ed. 63, e202400303 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yu, J. et al. In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yao, N. et al. Identifying the lithium bond and lithium ionic bond in electrolytes. Chem 11, 102254 (2025).

    Article 
    CAS 

    Google Scholar 

  • Guo, D. et al. Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, 2201410 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H., Liu, H., Piper, L. F. J., Whittingham, M. S. & Zhou, G. Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122, 5641–5681 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, J. et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano 15, 11607–11618 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, W. et al. “Peapod-like” fiber network: a universal strategy for composite solid electrolytes to inhibit lithium dendrite growth in solid-state lithium metal batteries. Nano Lett. 24, 9050–9057 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, W. et al. Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes. Nat. Commun. 15, 5860 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. K. et al. High energy density solid‐state lithium metal batteries enabled by in situ polymerized integrated ultrathin solid electrolyte/cathode. Adv. Funct. Mater. 34, 2311633 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ. Sci. 15, 5149–5158 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guo, J.-C. et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv. Mater. 35, 2300350 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xu, P. et al. Solvation regulation reinforces anion‐derived inorganic‐rich interphase for high‐performance quasi‐solid‐state Li metal batteries. Adv. Mater. 36, 2409489 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kong, W.-J. et al. Bulk/interfacial structure design of Li-rich Mn-based cathodes for all-solid-state lithium batteries. J. Am. Chem. Soc. 146, 28190–28200 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Frisch, M. J., et al. Gaussian 16 Rev. C.01 (Gaussian, 2016).

  • Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reed, A. E. et al. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article 
    CAS 

    Google Scholar 

  • Trasatti, S. The absolute electrode potential: an explanatory note. Pure Appl. Chem. 58, 955–966 (1986).

    Article 
    CAS 

    Google Scholar 

  • Continue Reading