The efficiency of phosphate inactivation in the bottom sediments of small retention reservoirs using a combination of calcium and iron salts, ex situ studies

  • Du, Y. X. et al. Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. Water Res. 219, 118560. https://doi.org/10.1016/j.watres.2022.11856 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. K. & Oh, J. M. A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water 10, 980. https://doi.org/10.3390/w10080980 (2018).

    Article 
    CAS 

    Google Scholar 

  • O’Connell, D. W. et al. Changes in sedimentary phosphorus burial following artificial eutrophication of lake 227, experimental lakes area. J. Geophys. Res.: Biogeosci. 125(8), e2020JG005713. https://doi.org/10.1029/2020JG005713 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rapin, A., Grybos, M., Rabiet, M., Mourier, B. & Deluchat, V. Phosphorus mobility in dam reservoir affected by redox oscillations: An experimental study. J. Environ. Sci. 77, 250–263. https://doi.org/10.1016/j.jes.2018.07.016 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tammeorg, O., Nürnberg, G. K., Nõges, P. & Niemistö, J. The role of humic substances in sediment phosphorus release in northern lakes. Sci. Total Environ. 833, 155257. https://doi.org/10.1016/j.scitotenv.2022.155257 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, H., Tai, Z., Li, Q. & Zhang, F. Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake. Environ. Pollut. 257, 113500. https://doi.org/10.1016/j.envpol.2019.113500 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, L., Mucci, M. & Lürling, M. Influence of temperature and pH on phosphate removal efficiency of different sorbents used in lake restoration. Sci. Total Environ. 812, 151489. https://doi.org/10.1016/j.scitotenv.2021.151489 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waters, S., Hamilton, D., Pan, G., Michener, S. & Ogilvie, S. Oxygen nanobubbles for lake restoration-where are we at? a review of a new-generation approach to managing lake eutrophication. Water 14, 1989. https://doi.org/10.3390/w14131989 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, W. et al. Ferric- and calcium-loaded red soil assist colonization of submerged macrophyte for the in-situ remediation of eutrophic shallow lake: From mesocosm experiment to field enclosure application. Sci. Total Environ. 924, 171730. https://doi.org/10.1016/j.scitotenv.2024.171730 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Inhibition of sediment erosion and phosphorus release by remediation strategy of contaminated sediment backfilling. Water Res. 239, 120055. https://doi.org/10.1016/j.watres.2023.120055 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lürling, M. et al. Coagulation and precipitation of cyanobacterial blooms. Ecol. Eng. 158, 106032. https://doi.org/10.1016/j.ecoleng.2020.106032 (2020).

    Article 

    Google Scholar 

  • Bartoszek, L. & Koszelnik, P. Lakes and reservoirs restoration – Short description of the chosen methods. In Progress In Environmental Engineering. (eds Tomaszek, J. A. & Koszelnik, P.) (Taylor & Francis Group, 2015).

    Google Scholar 

  • Jilbert, T., Couture, R. M., Huser, B. J. & Salonen, K. Preface: Restoration of eutrophic lakes: current practices and future challenges. Hydrobiologia 847, 4343–4357. https://doi.org/10.1007/s10750-020-04457-x (2020).

    Article 

    Google Scholar 

  • Gibbs, M. M. & Hickey, C. W. Flocculants and Sediment Capping for Phosphorus Management. In Lake Restoration Handbook. (eds Hamilton, D. et al.) (Springer, 2018).

    Google Scholar 

  • Huang, W. et al. Interception of phosphorus release from sediment by magnetite/lanthanum carbonate co modified activated attapulgite composite: Performance and mechanism. Colloids Surf. A. 664, 131139. https://doi.org/10.1016/j.colsurfa.2023.131139 (2023).

    Article 
    CAS 

    Google Scholar 

  • Junakova, N., Balintova, M. & Smolakova, M. Influence of granularity of sediment from a water reservoir on phosphorus sorption processes. Environ. Processes 4(1), 239–249. https://doi.org/10.1007/s40710-017-0240-0 (2017).

    Article 

    Google Scholar 

  • Li, S. et al. Phosphorus removal by in situ sprayed ferric chloride in Dianchi Lake: Efficiency, stability, and mechanism. Process Saf. Environ. Prot. 131, 320–328. https://doi.org/10.1016/j.psep.2019.09.021 (2019).

    Article 
    CAS 

    Google Scholar 

  • Álvarez-Manzaneda, I., Baun, A., Cruz-Pizarro, L. & de Vicente, I. Ecotoxicity screening of novel phosphorus adsorbents used for lake restoration. Chemosphere 222, 469–478. https://doi.org/10.1016/j.chemosphere.2019.01.103 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bryl, Ł, Sobczyński, T. & Wiśniewski, R. Methods of protection and restoration of lakes. In Diagnosing The State Of The Environment Research Methods – Forecasts. (ed. Garbacz, J. K.) (Bydgoszcz, 2017).

    Google Scholar 

  • Gałczyńska, M. & Buśko, M. Status of water reservoirs in Poland and potential and applied methods of their protection and restoration. Wiadomości Melioracyjne i Łąkarskie 3, 129–135 (2016) (in Polish).

    Google Scholar 

  • Lewtas, K., Paterson, M., Venema, H. D. & Roy, D. Manitoba Prairie Lakes: Eutrophication and In-Lake Remediation Treatments Literature Review. 1–110 (International Institute for Sustainable Development, Winnipeg, Canada, 2015).

  • Funes, A., de Vicente, J., Cruz-Pizarro, L., Álvarez-Manzaneda, I. & de Vicente, I. Magnetic microparticles as a new tool for lake restoration: a microcosm experiment for evaluating the impact on phosphorus fluxes and sedimentary phosphorus pools. Water Res. 89, 366–374. https://doi.org/10.1016/j.watres.2015.11.067 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reitzel, K., Jensen, H. S. & Egemose, S. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminium. Water Res. 47(3), 1409–1420. https://doi.org/10.1016/j.watres.2012.12.004 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rönicke, H. et al. Suppression of bloom–forming colonial cyanobacteria by phosphate precipitation: A 30 years case study in Lake Barleber (Germany). Ecol. Eng. 162, 106171. https://doi.org/10.1016/j.ecoleng.2021.106171 (2021).

    Article 

    Google Scholar 

  • Agstam-Norlin, O., Lannergård, E. E., Futter, M. N. & Huser, B. J. Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. Water Res. 185, 116150. https://doi.org/10.1016/j.watres.2020.116150 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moore, B. C. & Christensen, D. Newman lake restoration: A case study. Part I. Chemical and biological responses to phosphorus control. Lake Reservoir Manag. 25, 337–350. https://doi.org/10.1080/07438140903172907 (2009).

    Article 

    Google Scholar 

  • Zamparas, M. & Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 496, 551–562. https://doi.org/10.1016/j.scitotenv.2014.07.076 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhi, Y. et al. Emerging lanthanum (III)-containing materials for phosphate removal from water: a review towards future developments. Environ. Int. 145, 106115. https://doi.org/10.1016/j.envint.2020.106115 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, H. et al. Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: Effectiveness and ecological risks. Sci. Total Environ. 25(705), 135850. https://doi.org/10.1016/j.scitotenv.2019.135850 (2020).

    Article 
    CAS 

    Google Scholar 

  • Salonen, V. P., Varjo, E. & Rantala, P. Gypsum treatment in managing the internal phosphorus load from sapropelic sediments; experiments on Lake Laikkalammi. Finland. Boreal Environ. Res. 6, 119–129 (2001).

    CAS 

    Google Scholar 

  • Bartoszek, L. The influence of gypsum treatment on phosphorus retention in bottom sediments and on the water of man-made lake. J. Ecol. Eng. 18(1), 238–245 (2017).

    Article 

    Google Scholar 

  • Bartoszek, L. & Tomaszek, J. A. Effect of calcium sulfate (VI) dihydrate on phosphorus retention in bottom sediments of Solina – Myczkowce dam reservoirs. In Protection And Reclamation Of Lakes. (ed. Wiśniewski, R.) (Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, Poland, 2010). (in Polish).

  • León, J. G., Pedrozo, F. L. & Temporetti, P. F. Phosphorus fractions and sorption dynamics in the sediments of two Ca-SO4 water reservoirs in the central Argentine Andes. Int. J. Sediment Res. 32(3), 442–451. https://doi.org/10.1016/j.ijsrc.2017.03.002 (2017).

    Article 

    Google Scholar 

  • Li, X. et al. Immobilization and release behavior of phosphorus on phoslock-inactivated sediment under conditions simulating the photic zone in eutrophic shallow Lakes. Environ. Sci. Technol. 53, 12449–12457. https://doi.org/10.1021/acs.est.9b04093 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Copetti, D. et al. Eutrophication management in surface waters using lanthanum modified bentonite: a review. Water Res. 97, 162–174. https://doi.org/10.1016/j.watres.2015.11.056 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dadi, T. et al. Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy. Water Res. 235, 119824. https://doi.org/10.1016/j.watres.2023.119824 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huser, B. J. et al. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res 97, 122–132. https://doi.org/10.1016/j.watres.2015.06.051 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spears, B. M. et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Res. 97, 111–121. https://doi.org/10.1016/j.watres.2015.08.020 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Augustyniak, R. et al. Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method 15 years after the termination of lake restoration procedures. Water 11(10), 2175. https://doi.org/10.3390/w11102175 (2019).

    Article 
    CAS 

    Google Scholar 

  • Augustyniak, R., Tandyrak, R., Łopata, M. & Grochowska, J. Long term sediment modification effects after applications of P inactivation method in meromictic lake (Starodworskie Lake, Olsztyn Lakeland, Poland). Land 10, 411. https://doi.org/10.3390/land10040411 (2021).

    Article 

    Google Scholar 

  • Dondajewska, R. et al. Long-term water quality changes as a result of sustainable restoration – a case study of dimictic Lake Durowskie. Water 11, 616. https://doi.org/10.3390/w11030616 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gołdyn, R., Podsiadłowski, S., Dondajewska, R. & Kozak, A. The sustainable restoration of lakes-towards the challenges of the water framework directive. Ecohydrol. Hydrobiol. 14, 68–74. https://doi.org/10.1016/j.ecohyd.2013.12.001 (2014).

    Article 

    Google Scholar 

  • Grochowska, J. K., Łopata, M., Augustyniak-Tunowska, R. & Tandyrak, R. Sequential application of different types of coagulants as an innovative method of phosphorus inactivation, on the example of Lake Mielenko. Poland. Sustain. 15, 16346. https://doi.org/10.3390/su152316346 (2023).

    Article 
    CAS 

    Google Scholar 

  • Grochowska, J. K. How can restoration improve the environmental conditions of a meromictic urban lake?. Water 16, 3238. https://doi.org/10.3390/w16223238 (2024).

    Article 
    CAS 

    Google Scholar 

  • Fuchs, E., Funes, A., Saar, K., Reitzel, K. & Jensen, H. S. Evaluation of dried amorphous ferric hydroxide CFH-12® as agent for binding bioavailable phosphorus in lake sediments. Sci. Total Environ. 628–629, 990–996. https://doi.org/10.1016/j.scitotenv.2018.02.059 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, S., Lin, J. & Zhan, Y. Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization. Water Res. 247, 120777. https://doi.org/10.1016/j.watres.2023.120777 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doig, L. E. et al. Phosphorus release from sediments in a river-valley reservoir in the northern great plains of North America. Hydrobiologia 787, 323–339. https://doi.org/10.1007/s10750-016-2977-2 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31. https://doi.org/10.6084/m9.figshare.10538486 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartoszek, L. Degradation Of Small Retention Reservoirs – Conditions, Intensification, The Possibility Of Chemical Reclamation. 1–212. (Oficyna Wydawnicza PRz, Rzeszów, Poland, 2019) (in Polish).

  • Bartoszek, L., Gruca-Rokosz, R., Pękala, A. & Czarnota, J. Heavy metal accumulation in sediments of small retention reservoirs – Ecological risk and the impact of humic substances distribution. Resources 11, 113. https://doi.org/10.3390/resources11120113 (2022).

    Article 

    Google Scholar 

  • Bartoszek, L. The effect of natural organic matter (NOM) on the distribution and resources of mobile phosphorus in the bottom sediments of small retention reservoirs. Aquat. Sci. 85, 107. https://doi.org/10.1007/s00027-023-01003-4 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wiśniewski, R., Nowacki, P. & Szulczewski, A. Studies of Jelonek Lake in Gniezno and considerations for its reclamation program. In Protection And Reclamation Of Lakes, VII Scientific and Technical Conference, Toruń, Poland. 2010.

  • Abesser, C. & Robinson, R. Mobilisation of iron and manganese from sediments of a Scottish upland reservoir. J. Limnol. 69(1), 42–53. https://doi.org/10.4081/jlimnol.2010.42 (2010).

    Article 

    Google Scholar 

  • Chen, M. et al. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Res. 96, 94–104. https://doi.org/10.1016/j.watres.2016.03.030 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Chen, J., Guo, J., Sun, Q. & Yang, H. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment. Environ. Sci. Pollut. Res. 25, 10740–10751. https://doi.org/10.1007/s11356-018-1373-z (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Enhanced DGT capability for measurements of multiple types of analytes using synergistic effects among different binding agents. Sci. Total Environ. 657, 446–456. https://doi.org/10.1016/j.scitotenv.2018.12.016 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simpson, Z. P., McDowell, R. W. & Condron, L. M. The error in stream sediment phosphorus fractionation and sorption properties effected by drying pretreatments. J. Soils Sediments 19, 1587–1597. https://doi.org/10.1007/s11368-018-2180-3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y., Sheng, X., Dong, Y. & Ma, Y. Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination 289, 66–71. https://doi.org/10.1016/j.desal.2012.01.011 (2012).

    Article 
    CAS 

    Google Scholar 

  • Łopata, M., Wiśniewski, G. & Brzozowska, R. Aluminum treatment of low alkaline lake waters buffered with calcium carbonate—laboratory investigations. Global J. Adv. Pure Appl. Sci. 1, 704–709 (2013).

    Google Scholar 

  • Pliński, M. Causes and effects of cyanobacterial blooms. 4th National Cyanobacterial Workshop, Uniwersytet Gdański, Instytut Oceanografii, Regionalne Centrum Sinicowe oraz Polskie Towarzystwo Hydrobiologiczne, Gdynia, Poland, 24.06.2009, 4–8

  • Lürling, M., Waajen, G. & van Oosterhout, F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Res. 54, 78–88. https://doi.org/10.1016/j.watres.2014.01.059 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nur, T. et al. Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J. Ind. Eng. Chem. 20(4), 1301–1307. https://doi.org/10.1016/j.jiec.2013.07.009 (2014).

    Article 
    CAS 

    Google Scholar 

  • Vuorio, K., Järvinen, M. & Kotamäki, N. Phosphorus thresholds for bloom-forming cyanobacterial taxa in boreal lakes. Hydrobiologia 847, 4389–4400. https://doi.org/10.1007/s10750-019-04161-5 (2020).

    Article 
    CAS 

    Google Scholar 

  • Szarek-Gwiazda, E. & Gwiazda, R. Impact of flow and damming on water quality of the mountain Raba River (southern Poland)-long-term studies. Arch. Environ. Prot. 48(1), 31–40 (2022).

    CAS 

    Google Scholar 

  • Continue Reading