Du, Y. X. et al. Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. Water Res. 219, 118560. https://doi.org/10.1016/j.watres.2022.11856 (2022).
Google Scholar
Lee, J. K. & Oh, J. M. A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water 10, 980. https://doi.org/10.3390/w10080980 (2018).
Google Scholar
O’Connell, D. W. et al. Changes in sedimentary phosphorus burial following artificial eutrophication of lake 227, experimental lakes area. J. Geophys. Res.: Biogeosci. 125(8), e2020JG005713. https://doi.org/10.1029/2020JG005713 (2020).
Google Scholar
Rapin, A., Grybos, M., Rabiet, M., Mourier, B. & Deluchat, V. Phosphorus mobility in dam reservoir affected by redox oscillations: An experimental study. J. Environ. Sci. 77, 250–263. https://doi.org/10.1016/j.jes.2018.07.016 (2019).
Google Scholar
Tammeorg, O., Nürnberg, G. K., Nõges, P. & Niemistö, J. The role of humic substances in sediment phosphorus release in northern lakes. Sci. Total Environ. 833, 155257. https://doi.org/10.1016/j.scitotenv.2022.155257 (2022).
Google Scholar
Yuan, H., Tai, Z., Li, Q. & Zhang, F. Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake. Environ. Pollut. 257, 113500. https://doi.org/10.1016/j.envpol.2019.113500 (2020).
Google Scholar
Kang, L., Mucci, M. & Lürling, M. Influence of temperature and pH on phosphate removal efficiency of different sorbents used in lake restoration. Sci. Total Environ. 812, 151489. https://doi.org/10.1016/j.scitotenv.2021.151489 (2022).
Google Scholar
Waters, S., Hamilton, D., Pan, G., Michener, S. & Ogilvie, S. Oxygen nanobubbles for lake restoration-where are we at? a review of a new-generation approach to managing lake eutrophication. Water 14, 1989. https://doi.org/10.3390/w14131989 (2022).
Google Scholar
Li, W. et al. Ferric- and calcium-loaded red soil assist colonization of submerged macrophyte for the in-situ remediation of eutrophic shallow lake: From mesocosm experiment to field enclosure application. Sci. Total Environ. 924, 171730. https://doi.org/10.1016/j.scitotenv.2024.171730 (2024).
Google Scholar
Li, X. et al. Inhibition of sediment erosion and phosphorus release by remediation strategy of contaminated sediment backfilling. Water Res. 239, 120055. https://doi.org/10.1016/j.watres.2023.120055 (2023).
Google Scholar
Lürling, M. et al. Coagulation and precipitation of cyanobacterial blooms. Ecol. Eng. 158, 106032. https://doi.org/10.1016/j.ecoleng.2020.106032 (2020).
Google Scholar
Bartoszek, L. & Koszelnik, P. Lakes and reservoirs restoration – Short description of the chosen methods. In Progress In Environmental Engineering. (eds Tomaszek, J. A. & Koszelnik, P.) (Taylor & Francis Group, 2015).
Jilbert, T., Couture, R. M., Huser, B. J. & Salonen, K. Preface: Restoration of eutrophic lakes: current practices and future challenges. Hydrobiologia 847, 4343–4357. https://doi.org/10.1007/s10750-020-04457-x (2020).
Google Scholar
Gibbs, M. M. & Hickey, C. W. Flocculants and Sediment Capping for Phosphorus Management. In Lake Restoration Handbook. (eds Hamilton, D. et al.) (Springer, 2018).
Huang, W. et al. Interception of phosphorus release from sediment by magnetite/lanthanum carbonate co modified activated attapulgite composite: Performance and mechanism. Colloids Surf. A. 664, 131139. https://doi.org/10.1016/j.colsurfa.2023.131139 (2023).
Google Scholar
Junakova, N., Balintova, M. & Smolakova, M. Influence of granularity of sediment from a water reservoir on phosphorus sorption processes. Environ. Processes 4(1), 239–249. https://doi.org/10.1007/s40710-017-0240-0 (2017).
Google Scholar
Li, S. et al. Phosphorus removal by in situ sprayed ferric chloride in Dianchi Lake: Efficiency, stability, and mechanism. Process Saf. Environ. Prot. 131, 320–328. https://doi.org/10.1016/j.psep.2019.09.021 (2019).
Google Scholar
Álvarez-Manzaneda, I., Baun, A., Cruz-Pizarro, L. & de Vicente, I. Ecotoxicity screening of novel phosphorus adsorbents used for lake restoration. Chemosphere 222, 469–478. https://doi.org/10.1016/j.chemosphere.2019.01.103 (2019).
Google Scholar
Bryl, Ł, Sobczyński, T. & Wiśniewski, R. Methods of protection and restoration of lakes. In Diagnosing The State Of The Environment Research Methods – Forecasts. (ed. Garbacz, J. K.) (Bydgoszcz, 2017).
Gałczyńska, M. & Buśko, M. Status of water reservoirs in Poland and potential and applied methods of their protection and restoration. Wiadomości Melioracyjne i Łąkarskie 3, 129–135 (2016) (in Polish).
Lewtas, K., Paterson, M., Venema, H. D. & Roy, D. Manitoba Prairie Lakes: Eutrophication and In-Lake Remediation Treatments Literature Review. 1–110 (International Institute for Sustainable Development, Winnipeg, Canada, 2015).
Funes, A., de Vicente, J., Cruz-Pizarro, L., Álvarez-Manzaneda, I. & de Vicente, I. Magnetic microparticles as a new tool for lake restoration: a microcosm experiment for evaluating the impact on phosphorus fluxes and sedimentary phosphorus pools. Water Res. 89, 366–374. https://doi.org/10.1016/j.watres.2015.11.067 (2016).
Google Scholar
Reitzel, K., Jensen, H. S. & Egemose, S. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminium. Water Res. 47(3), 1409–1420. https://doi.org/10.1016/j.watres.2012.12.004 (2013).
Google Scholar
Rönicke, H. et al. Suppression of bloom–forming colonial cyanobacteria by phosphate precipitation: A 30 years case study in Lake Barleber (Germany). Ecol. Eng. 162, 106171. https://doi.org/10.1016/j.ecoleng.2021.106171 (2021).
Google Scholar
Agstam-Norlin, O., Lannergård, E. E., Futter, M. N. & Huser, B. J. Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. Water Res. 185, 116150. https://doi.org/10.1016/j.watres.2020.116150 (2020).
Google Scholar
Moore, B. C. & Christensen, D. Newman lake restoration: A case study. Part I. Chemical and biological responses to phosphorus control. Lake Reservoir Manag. 25, 337–350. https://doi.org/10.1080/07438140903172907 (2009).
Google Scholar
Zamparas, M. & Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 496, 551–562. https://doi.org/10.1016/j.scitotenv.2014.07.076 (2014).
Google Scholar
Zhi, Y. et al. Emerging lanthanum (III)-containing materials for phosphate removal from water: a review towards future developments. Environ. Int. 145, 106115. https://doi.org/10.1016/j.envint.2020.106115 (2020).
Google Scholar
Yang, H. et al. Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: Effectiveness and ecological risks. Sci. Total Environ. 25(705), 135850. https://doi.org/10.1016/j.scitotenv.2019.135850 (2020).
Google Scholar
Salonen, V. P., Varjo, E. & Rantala, P. Gypsum treatment in managing the internal phosphorus load from sapropelic sediments; experiments on Lake Laikkalammi. Finland. Boreal Environ. Res. 6, 119–129 (2001).
Google Scholar
Bartoszek, L. The influence of gypsum treatment on phosphorus retention in bottom sediments and on the water of man-made lake. J. Ecol. Eng. 18(1), 238–245 (2017).
Google Scholar
Bartoszek, L. & Tomaszek, J. A. Effect of calcium sulfate (VI) dihydrate on phosphorus retention in bottom sediments of Solina – Myczkowce dam reservoirs. In Protection And Reclamation Of Lakes. (ed. Wiśniewski, R.) (Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, Poland, 2010). (in Polish).
León, J. G., Pedrozo, F. L. & Temporetti, P. F. Phosphorus fractions and sorption dynamics in the sediments of two Ca-SO4 water reservoirs in the central Argentine Andes. Int. J. Sediment Res. 32(3), 442–451. https://doi.org/10.1016/j.ijsrc.2017.03.002 (2017).
Google Scholar
Li, X. et al. Immobilization and release behavior of phosphorus on phoslock-inactivated sediment under conditions simulating the photic zone in eutrophic shallow Lakes. Environ. Sci. Technol. 53, 12449–12457. https://doi.org/10.1021/acs.est.9b04093 (2019).
Google Scholar
Copetti, D. et al. Eutrophication management in surface waters using lanthanum modified bentonite: a review. Water Res. 97, 162–174. https://doi.org/10.1016/j.watres.2015.11.056 (2015).
Google Scholar
Dadi, T. et al. Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy. Water Res. 235, 119824. https://doi.org/10.1016/j.watres.2023.119824 (2023).
Google Scholar
Huser, B. J. et al. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res 97, 122–132. https://doi.org/10.1016/j.watres.2015.06.051 (2016).
Google Scholar
Spears, B. M. et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Res. 97, 111–121. https://doi.org/10.1016/j.watres.2015.08.020 (2016).
Google Scholar
Augustyniak, R. et al. Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method 15 years after the termination of lake restoration procedures. Water 11(10), 2175. https://doi.org/10.3390/w11102175 (2019).
Google Scholar
Augustyniak, R., Tandyrak, R., Łopata, M. & Grochowska, J. Long term sediment modification effects after applications of P inactivation method in meromictic lake (Starodworskie Lake, Olsztyn Lakeland, Poland). Land 10, 411. https://doi.org/10.3390/land10040411 (2021).
Google Scholar
Dondajewska, R. et al. Long-term water quality changes as a result of sustainable restoration – a case study of dimictic Lake Durowskie. Water 11, 616. https://doi.org/10.3390/w11030616 (2019).
Google Scholar
Gołdyn, R., Podsiadłowski, S., Dondajewska, R. & Kozak, A. The sustainable restoration of lakes-towards the challenges of the water framework directive. Ecohydrol. Hydrobiol. 14, 68–74. https://doi.org/10.1016/j.ecohyd.2013.12.001 (2014).
Google Scholar
Grochowska, J. K., Łopata, M., Augustyniak-Tunowska, R. & Tandyrak, R. Sequential application of different types of coagulants as an innovative method of phosphorus inactivation, on the example of Lake Mielenko. Poland. Sustain. 15, 16346. https://doi.org/10.3390/su152316346 (2023).
Google Scholar
Grochowska, J. K. How can restoration improve the environmental conditions of a meromictic urban lake?. Water 16, 3238. https://doi.org/10.3390/w16223238 (2024).
Google Scholar
Fuchs, E., Funes, A., Saar, K., Reitzel, K. & Jensen, H. S. Evaluation of dried amorphous ferric hydroxide CFH-12® as agent for binding bioavailable phosphorus in lake sediments. Sci. Total Environ. 628–629, 990–996. https://doi.org/10.1016/j.scitotenv.2018.02.059 (2018).
Google Scholar
Jin, S., Lin, J. & Zhan, Y. Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization. Water Res. 247, 120777. https://doi.org/10.1016/j.watres.2023.120777 (2023).
Google Scholar
Doig, L. E. et al. Phosphorus release from sediments in a river-valley reservoir in the northern great plains of North America. Hydrobiologia 787, 323–339. https://doi.org/10.1007/s10750-016-2977-2 (2017).
Google Scholar
Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31. https://doi.org/10.6084/m9.figshare.10538486 (2020).
Google Scholar
Bartoszek, L. Degradation Of Small Retention Reservoirs – Conditions, Intensification, The Possibility Of Chemical Reclamation. 1–212. (Oficyna Wydawnicza PRz, Rzeszów, Poland, 2019) (in Polish).
Bartoszek, L., Gruca-Rokosz, R., Pękala, A. & Czarnota, J. Heavy metal accumulation in sediments of small retention reservoirs – Ecological risk and the impact of humic substances distribution. Resources 11, 113. https://doi.org/10.3390/resources11120113 (2022).
Google Scholar
Bartoszek, L. The effect of natural organic matter (NOM) on the distribution and resources of mobile phosphorus in the bottom sediments of small retention reservoirs. Aquat. Sci. 85, 107. https://doi.org/10.1007/s00027-023-01003-4 (2023).
Google Scholar
Wiśniewski, R., Nowacki, P. & Szulczewski, A. Studies of Jelonek Lake in Gniezno and considerations for its reclamation program. In Protection And Reclamation Of Lakes, VII Scientific and Technical Conference, Toruń, Poland. 2010.
Abesser, C. & Robinson, R. Mobilisation of iron and manganese from sediments of a Scottish upland reservoir. J. Limnol. 69(1), 42–53. https://doi.org/10.4081/jlimnol.2010.42 (2010).
Google Scholar
Chen, M. et al. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Res. 96, 94–104. https://doi.org/10.1016/j.watres.2016.03.030 (2016).
Google Scholar
Wang, J., Chen, J., Guo, J., Sun, Q. & Yang, H. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment. Environ. Sci. Pollut. Res. 25, 10740–10751. https://doi.org/10.1007/s11356-018-1373-z (2018).
Google Scholar
Wang, Y. et al. Enhanced DGT capability for measurements of multiple types of analytes using synergistic effects among different binding agents. Sci. Total Environ. 657, 446–456. https://doi.org/10.1016/j.scitotenv.2018.12.016 (2019).
Google Scholar
Simpson, Z. P., McDowell, R. W. & Condron, L. M. The error in stream sediment phosphorus fractionation and sorption properties effected by drying pretreatments. J. Soils Sediments 19, 1587–1597. https://doi.org/10.1007/s11368-018-2180-3 (2019).
Google Scholar
Liu, Y., Sheng, X., Dong, Y. & Ma, Y. Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination 289, 66–71. https://doi.org/10.1016/j.desal.2012.01.011 (2012).
Google Scholar
Łopata, M., Wiśniewski, G. & Brzozowska, R. Aluminum treatment of low alkaline lake waters buffered with calcium carbonate—laboratory investigations. Global J. Adv. Pure Appl. Sci. 1, 704–709 (2013).
Pliński, M. Causes and effects of cyanobacterial blooms. 4th National Cyanobacterial Workshop, Uniwersytet Gdański, Instytut Oceanografii, Regionalne Centrum Sinicowe oraz Polskie Towarzystwo Hydrobiologiczne, Gdynia, Poland, 24.06.2009, 4–8
Lürling, M., Waajen, G. & van Oosterhout, F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Res. 54, 78–88. https://doi.org/10.1016/j.watres.2014.01.059 (2014).
Google Scholar
Nur, T. et al. Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J. Ind. Eng. Chem. 20(4), 1301–1307. https://doi.org/10.1016/j.jiec.2013.07.009 (2014).
Google Scholar
Vuorio, K., Järvinen, M. & Kotamäki, N. Phosphorus thresholds for bloom-forming cyanobacterial taxa in boreal lakes. Hydrobiologia 847, 4389–4400. https://doi.org/10.1007/s10750-019-04161-5 (2020).
Google Scholar
Szarek-Gwiazda, E. & Gwiazda, R. Impact of flow and damming on water quality of the mountain Raba River (southern Poland)-long-term studies. Arch. Environ. Prot. 48(1), 31–40 (2022).
Google Scholar