Effects of whole-plant extracts of four species dominant in the Qinghai-Tibetan plateau on their germination and growth patterns | BMC Plant Biology

  • Friedman J, Waller GR. Allelopathy and autotoxicity. Trends Biochem Sci. 1985;10(2):47–50. https://doi.org/10.1016/0968-0004(85)90224-5.

    Article 
    CAS 

    Google Scholar 

  • Meiners S, Kong C, Ladwig L, Pisula N, Lang K. Developing an ecological context for allelopathy. Plant Ecol. 2012;213:1221–7. https://doi.org/10.1007/s11258-012-0078-5.

    Article 

    Google Scholar 

  • Zhang Z, Liu Y, Yuan L, Weber E, van Kleunen M. Effect of allelopathy on plant performance: a meta-analysis. Ecol Lett. 2021;24(2):348–62. https://doi.org/10.1111/ele.13627.

    Article 
    PubMed 

    Google Scholar 

  • Williams RD, Hoagland RE. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci. 1982;30(2):206–12. https://doi.org/10.1017/S0043174500062342.

    Article 
    CAS 

    Google Scholar 

  • Rasmussen JA, Einhellig FA. Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J Chem Ecol. 1977;3:197–205. https://doi.org/10.1007/BF00994146.

    Article 
    CAS 

    Google Scholar 

  • Blum U, Dalton BR, Rawlings JO. Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol. 1984;10:1169–91. https://doi.org/10.1007/BF00988547.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li Z, Wang Q, Ruan X, Pan C, Jiang D. Phenolics and plant allelopathy. Molecules. 2010;15(12):8933–52. https://doi.org/10.3390/molecules15128933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang K, Wang T, Ren C, Dou P, Miao Z, Liu X, Huang D, Wang K. Aqueous extracts of three herbs allelopathically inhibit lettuce germination but promote seedling growth at low concentrations. Plants. 2022;11(4):486. https://doi.org/10.3390/plants11040486.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang S, Zheng Y, Guo Y, Cen Z, Dong Y. Allelopathic effect of phenolic acids in various extracts of wheat against fusarium wilt in Faba bean. Funct Plant Biol. 2023;50(12):1062–72. https://doi.org/10.1071/FP23052.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gruľová D, Baranová B, Eliašová A, Brun C, Fejér J, Kron I, Campone L, Pagliari S, Nastišin Ľ, Sedlák V. Does the invasive Heracleum mantegazzianum influence other species by allelopathy? Plants. 2024;13(10):1333. https://doi.org/10.3390/plants13101333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia. 2000;71:S110–6. https://doi.org/10.1016/S0367-326X(00)00185-4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li J, Zhao T, Chen L, Chen H, Luo D, Chen C, Miao Y, Liu D. Artemisia argyi allelopathy: a generalist compromises hormone balance, element absorption, and photosynthesis of receptor plants. BMC Plant Biol. 2022;22(1):368. https://doi.org/10.1186/s12870-022-03757-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patanè C, Pellegrino A, Cosentino SL, Testa G. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy. 2023;13(2):454. https://doi.org/10.3390/agronomy13020454.

    Article 
    CAS 

    Google Scholar 

  • Yang H, Zhao Y, Wei S, Yu X. Isolation of allelochemicals from Rhododendron capitatum and their allelopathy on three perennial herbaceous plants. Plants. 2024;13(18):2585. https://doi.org/10.3390/plants13182585.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu R, Wu B, Cheng H, Wang S, Wei M, Wang C. Drought enhanced the allelopathy of goldenrod on the seed germination and seedling growth performance of lettuce. Pol J Environ Stud. 2020;30(1):423–32. https://doi.org/10.15244/PJOES/122691.

    Article 

    Google Scholar 

  • Wang X, Zhang R, Wang J, Di L, Wang H, Sikdar A. The effects of leaf extracts of four tree species on Amygdalus pedunculata seedlings growth. Front Plant Sci. 2021;11:587579. https://doi.org/10.3389/fpls.2020.587579.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang K, Dou P, Miao Z, Huang J, Gao Q, Guo L, Liu K, Rong Y, Huang D, Wang K. Seed germination and seedling growth response of Leymus chinensis to the allelopathic influence of grassland plants. Oecologia. 2024;204:899–913. https://doi.org/10.1007/s00442-024-05539-6.

    Article 
    PubMed 

    Google Scholar 

  • Qu T, Du X, Peng Y, Guo W, Zhao C, Losapio G. Invasive species allelopathy decreases plant growth and soil microbial activity. PLoS ONE. 2021;16(2):e0246685. https://doi.org/10.1371/journal.pone.0246685.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Wang J, Zhang R, Huang Y, Feng S, Ma X, Zhang Y, Sikdar A, Roy R. Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata pall. Forests. 2018;9(11):711. https://doi.org/10.3390/f9110711.

    Article 

    Google Scholar 

  • Hedge RS, Miller DA. Allelopathy and autotoxicity in alfalfa: characterization and effects of preceding crops and residue incorporation. Crop Sci. 1990;30(6):1255–9. https://doi.org/10.2135/cropsci1990.0011183X003000060020x.

    Article 

    Google Scholar 

  • McNaughton SJ. Autotoxic feedback in relatin to germination and seedling growth in Typha latifolia. Ecology. 1968;49(2):367–9. https://doi.org/10.2307/1934475.

    Article 

    Google Scholar 

  • Wang C, Liu Z, Wang Z, Pang W, Zhang L, Wen Z, Zhao Y, Sun J, Wang Z, Yang C. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Front Plant Sci. 2022;13:908426. https://doi.org/10.3389/fpls.2022.908426.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šoln K, Klemenčič M, Koce JD. Plant cell responses to allelopathy: from oxidative stress to programmed cell death. Protoplasma. 2022;259(5):1111–24. https://doi.org/10.1007/s00709-021-01729-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abenavoli MR, Cacco G, Sorgona A, Marabottini R, Paolacci AR, Ciaffi M, Badiani M. The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds. J Chem Ecol. 2006;32:489–506. https://doi.org/10.1007/s10886-005-9011-x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang G, Qian J, Cheng G, Lan Y. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan plateau and its global implication. Sci Total Environ. 2002;291(1–3):207–17. https://doi.org/10.1016/s0048-9697(01)01100-7.

    Article 
    CAS 

    Google Scholar 

  • Zhou X, Xiao Y, Ma D, Xie Y, Wang Y, Zhang H, Wang Y. The competitive strategies of poisonous weeds Elsholtzia densa benth. On the Qinghai Tibet plateau: allelopathy and improving soil environment. Front Plant Sci. 2023;14:1124139. https://doi.org/10.3389/fpls.2023.1124139.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han C, Pan K, Wu N, Wang J, Li W. Allelopathic effect of ginger on seed germination and seedling growth of soybean and Chive. Sci Hort. 2008;116(3):330–6. https://doi.org/10.1016/j.scienta.2008.01.005.

    Article 

    Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol. 2005;31:1187–203. https://doi.org/10.1007/s10886-005-4256-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Đorđević T, Đurović-Pejčev R, Stevanović M, Sarić-Krsmanović M, Radivojević L, Šantrić L, Gajić-Umiljendić J. Phytotoxicity and allelopathic potential of Juglans regia L. leaf extract. Front Plant Sci. 2022;13:986740. https://doi.org/10.3389/fpls.2022.986740.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng R, Luo S, Shi Y, Shi M, Tu C. Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron J. 2001;93(1):72–9. https://doi.org/10.2134/agronj2001.93172x.

    Article 
    CAS 

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science. 2003;301(5638):1377–80. https://doi.org/10.1126/science.1083245.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yildirim AN, Çelik C, Yildirim F, Şan B, Polat M, Binici S, Pepe AV. Effects of different plant growth-promoting sources on antioxidant enzyme activities and phenolic compounds of Apple. Appl Fruit Sci. 2025;67(3):1–9. https://doi.org/10.1007/s10341-025-01359-x.

    Article 
    CAS 

    Google Scholar 

  • Sodaeizadeh H, Rafieiolhossaini M, Havlík J, Van Damme P. Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul. 2009;59:227–36. https://doi.org/10.1007/s10725-009-9408-6.

    Article 
    CAS 

    Google Scholar 

  • Gil CS, Duan S, Kim JH, Eom SH. Allelopathic efficiency of plant extracts to control cyanobacteria in hydroponic culture. Agronomy. 2021;11(11):2350. https://doi.org/10.3390/agronomy11112350.

    Article 
    CAS 

    Google Scholar 

  • Wang Y, Hanson J, Mariam YW. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Sci Technol. 2007;35(3):550–9. https://doi.org/10.15258/sst.2007.35.3.03.

    Article 

    Google Scholar 

  • Wang C, Wu B, Jiang K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology. 2019;28:103–16. https://doi.org/10.1007/s10646-018-2004-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patanè C, Cavallaro V, Cosentino SL. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Ind Crops Prod. 2009;30(1):1–8. https://doi.org/10.1016/j.indcrop.2008.12.005.

    Article 
    CAS 

    Google Scholar 

  • Hou Q, Chen B, Peng S, Chen L. Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions. 2014;16:2049–61. https://doi.org/10.1007/s10530-014-0647-8.

    Article 

    Google Scholar 

  • Li X, Wang J, Huang D, Wang L, Wang K. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the Northern China steppe. Plant Soil. 2011;341:383–98. https://doi.org/10.1007/s11104-010-0652-3.

    Article 
    CAS 

    Google Scholar 

  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. https://doi.org/10.1016/0003-2697(71)90370-8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou W, Zhao D, Lin X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and Mixtalol in winter rape (Brassica napus L). J Plant Growth Regul. 1997;16:47–53. https://doi.org/10.1007/PL00006974.

    Article 
    CAS 

    Google Scholar 

  • Quintanilla-Guerrero F, Duarte-Vázquez MA, García-Almendarez BE, Tinoco R, Vazquez-Duhalt R, Regalado C. Polyethylene glycol improves phenol removal by immobilized turnip peroxidase. Bioresour Technol. 2008;99(18):8605–11. https://doi.org/10.1016/j.biortech.2008.04.031.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muñoz-Muñoz JL, García-Molina F, García-Ruiz PA, Arribas E, Tudela J, García-Cánovas F, Rodríguez-López JN. Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chem. 2009;113(2):435–44. https://doi.org/10.1016/j.foodchem.2008.07.076.

    Article 
    CAS 

    Google Scholar 

  • Aebi H. Catalase in vitro. In: Packer L, editor. Methods in enzymology. Orlando: Academic; 1984. pp. 121–6. https://doi.org/10.1016/S0076-6879(84)05016-3.

    Chapter 

    Google Scholar 

  • Brady CJ, Heng F. Rate of protein synthesis in senescing, detached wheat leaves. Funct Plant Biol. 1975;2(2):163–76. https://doi.org/10.1071/pp9750163.

    Article 
    CAS 

    Google Scholar 

  • Arora R, Wisniewski ME, Scorza R. Cold acclimation in genetically related (sibling) deciduous and evergreen Peach (Prunus persica [L.] Batsch): I. seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 1992;105:95–101. https://doi.org/10.1104/pp.99.4.1562.

    Article 

    Google Scholar 

  • Williamson GB, Richardson D. Bioassays for allelopathy: measuring treatment responses with independent controls. J Chem Ecol. 1988;14:181–7. https://doi.org/10.1007/BF01022540.

    Article 

    Google Scholar 

  • Turk MA, Tawaha AM. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L). Crop Prot. 2003;22(4):673–7. https://doi.org/10.1016/s0261-2194(02)00241-7.

    Article 

    Google Scholar 

  • Zhang T, Guo W, Tian X, Lv Y, Feng K, Zhang C. Allelopathic effects of Borreria latifolia on weed germination and identification of allelochemicals. J Sci Food Agric. 2025;105(1):626–34. https://doi.org/10.1002/jsfa.13859.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haugland E, Brandsaeter LO. Experiments on bioassay sensitivity in the study of allelopathy. J Chem Ecol. 1996;22:1845–59. https://doi.org/10.1007/bf02028508.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chon SU, Nelson CJ. Allelopathy in compositae plants. A review. Agron Sustain Dev. 2010;30(2):349–58. https://doi.org/10.1051/agro/2009027.

    Article 
    CAS 

    Google Scholar 

  • Cruz Ortega R, Anaya AL, Ramos L. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol. 1988;14:71–86. https://doi.org/10.1007/BF01022532.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008;46(2):446–75. https://doi.org/10.1016/j.fct.2007.09.106.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arora S, Husain T, Prasad SM. Allelochemicals as biocontrol agents: promising aspects, challenges and opportunities. South Afr J Bot. 2024;166:503–11. https://doi.org/10.1016/j.sajb.2024.01.029.

    Article 
    CAS 

    Google Scholar 

  • Mominul Islam AKM, Kato-Noguchi H. Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause. Emirates J Food Agric. 2013;25(9):692–701. https://doi.org/10.9755/EJFA.V25I9.16073.

    Article 

    Google Scholar 

  • Meychik N, Nikolaeva Y, Kushunina M. The significance of ion-exchange properties of plant root cell walls for nutrient and water uptake by plants. Plant Physiol Biochem. 2021;166:140–7. https://doi.org/10.1016/j.plaphy.2021.05.048.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu Y, Wang H. Production and scavenging of reactive oxygen species in plant cells under cadmium stress. Agron J. 2025;117(4):e70116. https://doi.org/10.1002/agj2.70116.

    Article 

    Google Scholar 

  • Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. https://doi.org/10.3906/bot-1302-29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM. Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol. 2005;93(3):576–83. https://doi.org/10.1111/j.1365-2745.2005.00994.x.

    Article 

    Google Scholar 

  • Wang L, Oduor AM, Liu Y. A native herbaceous community exerts a strong allelopathic effect on the Woody range-expander Betula fruticosa. J Plant Ecol. 2024;17(4):rtae055. https://doi.org/10.1093/jpe/rtae055.

    Article 

    Google Scholar 

  • Wang C, Liu X, Li J, Yue L, Yang H, Zou H, Wang Z, Xing B. Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environ Pollut. 2021;289:117912. https://doi.org/10.1016/j.envpol.2021.117912.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu H, Shabala L, Shabala S, Giraldo JP. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Science: Nano. 2018;5(7):1567–83. https://doi.org/10.1039/C8EN00323H.

    Article 
    CAS 

    Google Scholar 

  • Li D, Si J, Li J, Wang P, Yuan L. Physiological responses and differences of Populus euphratica to salt stress and drought stress. J Desert Res. 2023;43(2):205–15. https://doi.org/10.7522/j.issn.1000-694X.2023.00006.

    Article 

    Google Scholar 

  • Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 2021;10(4):267. https://doi.org/10.3390/biology10040267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding J, Sun Y, Xiao C, Shi K, Zhou Y, Yu J. Physiological basis of different allelopathic reactions of cucumber and Figleaf gourd plants to cinnamic acid. J Exp Bot. 2007;58(13):3765–73. https://doi.org/10.1093/jxb/erm227.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hua Q, Liu Y, Yan Z, Zeng G, Liu S, Wang W, Tan X, Deng J, Tang X, Wang Q. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf. 2018;148:953–9. https://doi.org/10.1016/j.ecoenv.2017.11.049.

    Article 
    CAS 

    Google Scholar 

  • Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):e311. https://doi.org/10.1371/journal.pbio.0020311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miransari M, Smith DL. Plant hormones and seed germination. Environ Exp Bot. 2014;99:110–21. https://doi.org/10.1007/s11258-012-0078-5.

    Article 
    CAS 

    Google Scholar 

  • Oracz K, Voegele A, Tarkowská D, Jacquemoud D, Turečková V, Urbanová T, Strnad M, Sliwinska E, Leubner-Metzger G. Myrigalone a inhibits Lepidium sativum seed germination by interference with Gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol. 2012;53(1):81–95. https://doi.org/10.1093/pcp/pcr124.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García M, García G, Parola R, Maddela NR, Pérez-Almeida I, Garcés-Fiallos FR. Root-shoot ratio and SOD activity are associated with the sensitivity of common bean seedlings to NaCl salinization. Rhizosphere. 2024;29:100848. https://doi.org/10.1016/j.rhisph.2024.100848.

    Article 

    Google Scholar 

  • Continue Reading