High-throughput behavioural phenotyping of 25 C. elegans disease models including patient-specific mutations | BMC Biology

  • Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet. 2019;105(3):448–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165–73.

    PubMed 

    Google Scholar 

  • Lee CE, Singleton KS, Wallin M, Faundez V. Rare Genetic diseases: nature’s experiments on human development. iScience. 2020;23(5):101123.

  • Wagner GP, Zhang J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet. 2011;12(3):204–13.

    CAS 
    PubMed 

    Google Scholar 

  • Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM. Pleiotropic scaling of gene effects and the ‘cost of complexity.’ Nature. 2008;452(7186):470–2.

    CAS 
    PubMed 

    Google Scholar 

  • De Pace R, Maroofian R, Paimboeuf A, Zamani M, Zaki MS, Sadeghian S, et al. Biallelic BORCS8 variants cause an infantile-onset neurodegenerative disorder with altered lysosome dynamics. Brain. 2024;147(5):1751–67.

    PubMed 

    Google Scholar 

  • O’Brien TJ, Barlow IL, Feriani L, Brown AEX. Systematic creation and phenotyping of Mendelian disease models in C. elegans: towards large-scale drug repurposing. eLife. 2023;12. Available from: https://elifesciences.org/reviewed-preprints/92491. Cited 2024 Jan 19.

  • Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O’Brien TJ, Liu Z, et al. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol. 2022;5(1):1–13.

    Google Scholar 

  • Javer A, Currie M, Lee CW, Hokanson J, Li K, Martineau CN, et al. An open source platform for analyzing and sharing worm behavior data. Nat Methods. 2018;15(9):645–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Javer A, Ripoll-Sánchez L, Brown AEX. Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans. Philos Trans Royal Soc B: Biol Sci. 2018;373(1758):20170375.

    Google Scholar 

  • Maroofian R, Sarraf P, O’Brien TJ, Kamel M, Cakar A, Elkhateeb N, et al. RTN2 deficiency results in an autosomal recessive distal motor neuropathy with lower limb spasticity. Brain. 2024;147(7):2334–43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenhahn E, O’Brien TJ, Zaki MS, Sorge I, Wieczorek D, Rostasy K, et al. Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications. Am J Hum Genet. 2022;109(8):1421–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, et al. Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: a study in 42 affected individuals. Genet Med. 2023;25(1):90–102.

    CAS 
    PubMed 

    Google Scholar 

  • Catalano F, O’Brien TJ, Mekhova AA, Sepe LV, Elia M, De Cegli R, et al. A new Caenorhabditis elegans model to study copper toxicity in Wilson disease. Traffic. 2024;25(1):e12920.

    CAS 
    PubMed 

    Google Scholar 

  • Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. 2008;6(8):e198.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR. A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods. 2013;10(9):877–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pu J, Schindler C, Jia R, Jarnik M, Backlund P, Bonifacino JS. BORC, a multisubunit complex that regulates lysosome positioning. Dev Cell. 2015;33(2):176–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hermann GJ, Scavarda E, Weis AM, Saxton DS, Thomas LL, Salesky R, et al. C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLOS ONE. 2012;7(8):e43043.

  • O’Hagan R, Piasecki BP, Silva M, Phirke P, Nguyen KCQ, Hall DH, et al. The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr Biol. 2011;21(20):1685–94.

  • Bae YK, Lyman-Gingerich J, Barr MM, Knobel KM. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn. 2008;237(8):2021–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hobson RJ, Liu Q, Watanabe S, Jorgensen EM. Complexin maintains vesicles in the primed state in C. elegans. Curr Biol. 2011;21(2):106–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Possik E, Ajisebutu A, Manteghi S, Gingras MC, Vijayaraghavan T, Flamand M, et al. FLCN and AMPK confer resistance to hyperosmotic stress via remodeling of glycogen stores. PLoS Genet. 2015;11(10):e1005520.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gharbi H, Fabretti F, Bharill P, Rinschen MM, Brinkkötter S, Frommolt P, et al. Loss of the Birt-Hogg-Dubé gene product folliculin induces longevity in a hypoxia-inducible factor-dependent manner. Aging Cell. 2013;12(4):593–603.

    CAS 
    PubMed 

    Google Scholar 

  • Alqadah A, Hsieh YW, Xiong R, Lesch BJ, Chang C, Chuang CF. A universal transportin protein drives stochastic choice of olfactory neurons via specific nuclear import of a sox-2-activating factor. Proc Natl Acad Sci U S A. 2019;116(50):25137–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emtage L, Aziz-Zaman S, Padovan-Merhar O, Horvitz HR, Fang-Yen C, Ringstad N. IRK-1 potassium channels mediate peptidergic inhibition of Caenorhabditis elegans serotonin neurons via a go signaling pathway. J Neurosci. 2012;32(46):16285–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chien J, Wolf FW, Grosche S, Yosef N, Garriga G, Mörck C. The enigmatic canal-associated neurons regulate Caenorhabditis elegans larval development through a cAMP signaling pathway. Genetics. 2019;213(4):1465–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho VWS, Wong MK, An X, Guan D, Shao J, Ng HCK, et al. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol Syst Biol. 2015;11(6):814.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguirre-Chen C, Stec N, Ramos OM, Kim N, Kramer M, McCarthy S, et al. A Caenorhabditis elegans model for integrating the functions of neuropsychiatric risk genes identifies components required for normal dendritic morphology. G3 (Bethesda). 2020;10(5):1617–28.

  • Beacham GM, Partlow EA, Lange JJ, Hollopeter G. NECAPs are negative regulators of the AP2 clathrin adaptor complex. Pfeffer SR, editor. eLife. 2018;7:e32242.

  • Chen C, Itakura E, Weber KP, Hegde RS, de Bono M. An ER complex of ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism. PLoS Genet. 2014;10(3):e1004082.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Colin E, Daniel J, Ziegler A, Wakim J, Scrivo A, Haack TB, et al. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am J Hum Genet. 2016;99(3):695–703.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, et al. Systematic analysis of genes required for synapse structure and function. Nature. 2005;436(7050):510–7.

  • Wang D, O’Halloran D, Goodman MB. GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J Gen Physiol. 2013;142(4):437–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Halloran DM, Hamilton OS, Lee JI, Gallegos M, L’Etoile ND. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS ONE. 2012;7(2):e31614.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guha S, Pujol A, Dalfo E. Anti-oxidant MitoQ rescue of AWB chemosensory neuron impairment in a C. elegans model of X-linked Adrenoleukodystrophy. MicroPubl Biol. 2021;2021:10-17912.

  • Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol. 2006;173(2):231–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ. 2008;15(1):105–12.

    CAS 
    PubMed 

    Google Scholar 

  • Nam S, Min K, Hwang H, Lee HO, Lee JH, Yoon J, et al. Control of rapsyn stability by the CUL-3-containing E3 ligase complex. J Biol Chem. 2009;284(12):8195–206.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature. 2003;421(6920):268–72.

    CAS 
    PubMed 

    Google Scholar 

  • Vasudevan A, Ratnakaran N, Murthy K, Kumari S, Hall DH, Koushika SP. Preferential transport of synaptic vesicles across neuronal branches is regulated by the levels of the anterograde motor UNC-104/KIF1A in vivo. Genetics. 2024;227(1):iyae021.

  • Zheng Q, Ahlawat S, Schaefer A, Mahoney T, Koushika SP, Nonet ML. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genet. 2014;10(10): e1004644.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Skop AR, Liu H, Yates J, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. 2004;305(5680):61–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen X, Ruan MY, Cai SQ. KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans. J Neurosci. 2015;35(5):1880–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fawcett GL, Santi CM, Butler A, Harris T, Covarrubias M, Salkoff L. Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J Biol Chem. 2006;281(41):30725–35.

    CAS 
    PubMed 

    Google Scholar 

  • Mito Y, Sugimoto A, Yamamoto M. Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol Biol Cell. 2003;14(6):2399–409.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baudrimont A, Penkner A, Woglar A, Mamnun YM, Hulek M, Struck C, et al. A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans. PLoS ONE. 2011;6(9): e24799.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paquin N, Murata Y, Froehlich A, Omura DT, Ailion M, Pender CL, et al. The conserved VPS-50 protein functions in dense-core vesicle maturation and acidification and controls animal behavior. Curr Biol. 2016;26(7):862–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hofmann I, Munro S. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci. 2006;119(8):1494–503.

    CAS 
    PubMed 

    Google Scholar 

  • Rosa-Ferreira C, Munro S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell. 2011;21(6):1171–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niwa S, Lipton DM, Morikawa M, Zhao C, Hirokawa N, Lu H, et al. Autoinhibition of a neuronal kinesin UNC-104/KIF1A regulates the size and density of synapses. Cell Rep. 2016;16(8):2129–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guardia CM, Farías GG, Jia R, Pu J, Bonifacino JS. BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Rep. 2016;17(8):1950–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pace RD, Britt DJ, Mercurio J, Foster AM, Djavaherian L, Hoffmann V, et al. Synaptic vesicle precursors and lysosomes are transported by different mechanisms in the axon of mammalian neurons. Cell Rep. 2020;31(11). Available from: https://www.cell.com/cell-reports/abstract/S2211-1247(20)30755-5. Cited 2024 Sep 4.

  • Farías GG, Guardia CM, De Pace R, Britt DJ, Bonifacino JS. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci. 2017;114(14):E2955–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Snouwaert JN, Church RJ, Jania L, Nguyen M, Wheeler ML, Saintsing A, et al. A mutation in the Borcs7 subunit of the lysosome regulatory BORC complex results in motor deficits and dystrophic axonopathy in mice. Cell Rep. 2018;24(5):1254–65.

    CAS 
    PubMed 

    Google Scholar 

  • Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci. 2016;129(23):4329–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015–34.

    CAS 
    PubMed 

    Google Scholar 

  • Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to LROs: insights into lysosome-related organelles from Hermansky-Pudlak syndrome and other rare diseases. Traffic. 2019;20(6):404–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, et al. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain. 2016;139(Pt 2):317–37.

    PubMed 

    Google Scholar 

  • Schreij AMA, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci. 2016;73(8):1529–45.

    CAS 
    PubMed 

    Google Scholar 

  • Haidar M, Timmerman V. Autophagy as an emerging common pathomechanism in inherited peripheral neuropathies. Front Mol Neurosci. 2017;10:143.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539(7628):207–16.

    PubMed 

    Google Scholar 

  • Fraldi A, Klein AD, Medina DL, Settembre C. Brain disorders due to lysosomal dysfunction. Annu Rev Neurosci. 2016;8(39):277–95.

    Google Scholar 

  • Martini-Stoica H, Xu Y, Ballabio A, Zheng H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39(4):221–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiriyama Y, Nochi H. The function of autophagy in neurodegenerative diseases. Int J Mol Sci. 2015;16(11):26797–812.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duarte RRR, Troakes C, Nolan M, Srivastava DP, Murray RM, Bray NJ. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain. Am J Med Genet B Neuropsychiatr Genet. 2016;171(6):806–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016;22(6):649–56.

    CAS 
    PubMed 

    Google Scholar 

  • Walkley SU, Sikora J, Micsenyi M, Davidson C, Dobrenis K. Lysosomal compromise and brain dysfunction: examining the role of neuroaxonal dystrophy. Biochem Soc Trans. 2010;38(6):1436–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol. 2018;78(3):311–30.

    CAS 
    PubMed 

    Google Scholar 

  • Boda A, Lőrincz P, Takáts S, Csizmadia T, Tóth S, Kovács AL, et al. Drosophila Arl8 is a general positive regulator of lysosomal fusion events. Biochim Biophys Acta (BBA) – Mol Cell Res. 2019;1866(4):533–44.

  • Fazeli G, Levin-Konigsberg R, Bassik MC, Stigloher C, Wehman AM. A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes. Curr Biol. 2023;33(4):607-621.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tunganuntarat J, Kanjanasirirat P, Khumpanied T, Benjaskulluecha S, Wongprom B, Palaga T, et al. BORC complex specific components and Kinesin-1 mediate autophagy evasion by the autophagy-resistant Mycobacterium tuberculosis Beijing strain. Sci Rep. 2023;13(1):1663.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niwa S, Tao L, Lu SY, Liew GM, Feng W, Nachury MV, et al. BORC regulates the axonal transport of synaptic vesicle precursors by activating ARL-8. Curr Biol. 2017;27(17):2569-2578.e4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell. 2002;2(2):157–64.

    CAS 
    PubMed 

    Google Scholar 

  • Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dubé syndrome. Cancer Epidemiol Biomarkers Prev. 2002;11(4):393–400.

    PubMed 

    Google Scholar 

  • Schmidt LS, Linehan WM. FLCN: the causative gene for Birt-Hogg-Dubé syndrome. Gene. 2018;15(640):28–42.

    Google Scholar 

  • Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103(42):15552–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415(1–2):60–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin Y, Xu D, Mao Y, Xiao L, Sun Z, Liu J, et al. FNIP1 regulates adipocyte browning and systemic glucose homeostasis in mice by shaping intracellular calcium dynamics. J Exp Med. 2022;219(5):e20212491.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu M, Si S, Li Y, Schoen S, Xiao GQ, Li X, et al. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget. 2015;6(32):32761–73.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasumi Y, Baba M, Hasumi H, Huang Y, Lang M, Reindorf R, et al. Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation. Hum Mol Genet. 2014;23(21):5706–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME, et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci U S A. 2009;106(44):18722–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong M, Zhao X, Li J, Yuan W, Yan G, Tong M, et al. Tumor suppressor folliculin regulates mTORC1 through primary cilia. J Biol Chem. 2016;291(22):11689–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khabibullin D, Medvetz DA, Pinilla M, Hariharan V, Li C, Hergrueter A, et al. Folliculin regulates cell–cell adhesion, AMPK, and mTORC1 in a cell-type-specific manner in lung-derived cells. Physiol Rep. 2014;2(8):e12107.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luijten MNH, Basten SG, Claessens T, Vernooij M, Scott CL, Janssen R, et al. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 2013;22(21):4383–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cash TP, Gruber JJ, Hartman TR, Henske EP, Simon MC. Loss of the Birt–Hogg–Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription. Oncogene. 2011;30(22):2534–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong SB, Oh H, Valera VA, Stull J, Ngo DT, Baba M, et al. Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-β signaling. Mol Cancer. 2010;23(9):160.

    Google Scholar 

  • Possik E, Jalali Z, Nouët Y, Yan M, Gingras MC, Schmeisser K, et al. Folliculin regulates Ampk-dependent autophagy and metabolic stress survival. PLoS Genet. 2014;10(4):e1004273.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunlop EA, Seifan S, Claessens T, Behrends C, Kamps MA, Rozycka E, et al. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy. 2014;10(10):1749–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastola P, Stratton Y, Kellner E, Mikhaylova O, Yi Y, Sartor MA, et al. Folliculin contributes to VHL tumor suppressing activity in renal cancer through regulation of autophagy. PLoS ONE. 2013;8(7):e70030.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medvetz DA, Khabibullin D, Hariharan V, Ongusaha PP, Goncharova EA, Schlechter T, et al. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion. PLoS ONE. 2012;7(11):e47842.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laviolette LA, Wilson J, Koller J, Neil C, Hulick P, Rejtar T, et al. Human folliculin delays cell cycle progression through late S and G2/M-phases: effect of phosphorylation and tumor associated mutations. PLoS ONE. 2013;8(7): e66775.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kenyon EJ, Luijten MNH, Gill H, Li N, Rawlings M, Bull JC, et al. Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis. BMC Dev Biol. 2016;8(16):23.

    Google Scholar 

  • Fernández LP, Deleyto-Seldas N, Colmenarejo G, Sanz A, Wagner S, Plata-Gómez AB, et al. Folliculin-interacting protein FNIP2 impacts on overweight and obesity through a polymorphism in a conserved 3′ untranslated region. Genome Biol. 2022;31(23):230.

    Google Scholar 

  • Beydoun S, Choi HS, Dela-Cruz G, Kruempel J, Huang S, Bazopoulou D, et al. An alternative food source for metabolism and longevity studies in Caenorhabditis elegans. Commun Biol. 2021;4: 258.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams J, Chen ZP, Van Denderen BJW, Morton CJ, Parker MW, Witters LA, et al. Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site. Protein Sci. 2004;13(1):155–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner LB. Phosphorylation of eIF2α by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8(367):ra27.

  • Nukazuka A, Tamaki S, Matsumoto K, Oda Y, Fujisawa H, Takagi S. A shift of the TOR adaptor from Rictor towards Raptor by semaphorin in C. elegans. Nat Commun. 2011;2:484.

  • Twyffels L, Gueydan C, Kruys V. Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett. 2014;588(10):1857–68.

    CAS 
    PubMed 

    Google Scholar 

  • Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. Elife. 2017;6: e21184.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29(16):2841–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodman LD, Cope H, Nil Z, Ravenscroft TA, Charng WL, Lu S, et al. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am J Hum Genet. 2021;108(9):1669–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Depienne C, LeGuern E. PCDH19-related infantile epileptic encephalopathy: an unusual X-linked inheritance disorder. Hum Mutat. 2012;33(4):627–34.

    CAS 
    PubMed 

    Google Scholar 

  • Chook YM, Süel KE. Nuclear import by karyopherin-βs: recognition and inhibition. Biochim Biophys Acta. 2011;1813(9):1593–606.

    CAS 
    PubMed 

    Google Scholar 

  • Ajayi-Smith A, van der Watt P, Mkwanazi N, Carden S, Trent JO, Leaner VD. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp Cell Res. 2021;404(2):112637.

    CAS 
    PubMed 

    Google Scholar 

  • Patouret R. The nuclear transport protein importin-5: a promising target in oncology and virology. Chimia (Aarau). 2021;75(4):319–22.

    CAS 
    PubMed 

    Google Scholar 

  • Oldrini B, Hsieh WY, Erdjument-Bromage H, Codega P, Carro MS, Curiel-García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8(1):2035.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Truong T, Karlinski ZA, O’Hara C, Cabe M, Kim H, Bakowska JC. Oxidative stress in caenorhabditis elegans: protective effects of spartin. PLoS ONE. 2015;10(6):e0130455.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gourgou E, Chronis N. Chemically induced oxidative stress affects ASH neuronal function and behavior in C. elegans. Sci Rep. 2016;6(1):38147.

  • Oh KH, Kim H. Aldicarb-induced paralysis assay to determine defects in synaptic transmission in Caenorhabditis elegans. Bio Protoc. 2017;7(14):e2400.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA, Gillett PM, et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet. 2018;19(10):649–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yatskevich S, Rhodes J, Nasmyth K. Organization of chromosomal DNA by SMC complexes. Annu Rev Genet. 2019;3(53):445–82.

    Google Scholar 

  • Panarotto M, Davidson IF, Litos G, Schleiffer A, Peters JM. Cornelia de Lange syndrome mutations in NIPBL can impair cohesin-mediated DNA loop extrusion. Proc Natl Acad Sci. 2022;119(18):e2201029119.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gil-Rodríguez MC, Deardorff MA, Ansari M, Tan CA, Parenti I, Baquero-Montoya C, et al. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes. Hum Mutat. 2015;36(4):454–62.

    PubMed 

    Google Scholar 

  • Chatzigeorgiou M, Grundy L, Kindt KS, Lee WH, Driscoll M, Schafer WR. Spatial asymmetry in the mechanosensory phenotypes of the C. elegans DEG/ENaC gene mec-10. J Neurophysiol. 2010;104(6):3334–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A. 2024;121(10):e2308255121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aoki I, Shiota M, Tsukada Y, Nakano S, Mori I. cGMP dynamics that underlies thermosensation in temperature-sensing neuron regulates thermotaxis behavior in C. elegans. PLoS One. 2022;17(12):e0278343.

  • Iyer S, Mast JD, Tsang H, Rodriguez TP, DiPrimio N, Prangley M, et al. Drug screens of NGLY1 deficiency in worm and fly models reveal catecholamine, NRF2 and anti-inflammatory-pathway activation as potential clinical approaches. Dis Model Mech. 2019;12(11):dmm040576.

  • Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, et al. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol. 2024;22(6):e3002672.

  • Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, et al. Functional genomic analysis of RNA interference in C. elegans. Science. 2005;308(5725):1164–7.

  • Paix A, Folkmann A, Seydoux G. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods. 2017;121–122:86–93.

  • Stiernagle T. Maintenance of C. elegans. WormBook. 2006;11:1–11.

    Google Scholar 

  • Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30(4):313–21.

    CAS 
    PubMed 

    Google Scholar 

  • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.

    Google Scholar 

  • Waskom ML. seaborn: statistical data visualization. J Open Source Softw. 2021;6(60):3021.

    Google Scholar 

  • Continue Reading