Diversity and characterization of the ammonia-oxidizing bacteria responsible for nitrification in tea field soils

  • Ward, B. B. & Nitrification An introduction and overview of the state of the field. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 3–8. (Washington, DC, 2011).

  • Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528 (7583), 504–509 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75 (2), 139–157 (2005).

    Article 

    Google Scholar 

  • Huang, X. et al. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil. Biol. Biochem. 119, 83–89 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soil. Soil. Biol. Biochem. 131, 229–237 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yang, X. et al. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 717, 1–12 (2020).

    Article 

    Google Scholar 

  • Lin, Y. et al. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Goderma 404, 1–7 (2021).

    Google Scholar 

  • Li, C., Hu, H. W., Chen, Q. L., Chen, D. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil. Biol. Biochem. 138, 107609 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, J., Smith, P., Hergoualch, K. & Zou, J. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 185, 106501 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ye, J. et al. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant. Sci. 13, 1055900 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tokuda, S. & Hayatsu, M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan. Soil. Sci. Plant. Nutr. 47 (3), 637–642 (2001).

    Article 
    CAS 

    Google Scholar 

  • Karak, T. et al. Major soil chemical properties of the major tea-growing areas in India. Pedosphere 25 (2), 316–328 (2015).

    Article 
    CAS 

    Google Scholar 

  • Akiyama, H., Yan, X. & Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in japan: summary of available data. Soil. Sci. Plant. Nutr. 52, 774–787 (2006).

    Article 
    CAS 

    Google Scholar 

  • Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11 (5), 1130–1141 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, Y. et al. Enrichment of comammox and nitrite-oxidizing Nitrospira from acid soils. Front. Microbiol. 11, 1737 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomiyama, H. et al. Characteristics of newly isolated nitrifying bacteria from rhizoplane of paddy rice. Microbes Environ. 16 (2), 101–108 (2001).

    Article 

    Google Scholar 

  • Satoh, K., Itoh, C., Kang, D. J., Sumida, H. & Takahashi, R. Characteristics of newly isolated ammonia-oxidizing bacteria from acid sulfate soil and the rhizoplane of Leucaena grown in that soil. Soil. Sci. Plant. Nutr. 53, 23–31 (2010).

    Article 

    Google Scholar 

  • Bhuiya, Z. H. & Walker, N. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42, 253–257 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tago, K. et al. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil. Microbes Environ. 30 (1), 21–28 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Aigle, A., Prosser, J. I. & Gubry-Rangin, C. The application of high-throughput sequencing technology to analysis of AmoA phylogeny and environmental niche specialization of terrestrial bacterial ammonia-oxidisers. Environ. Microbiol. 14 (3), 1–10 (2019).

    CAS 

    Google Scholar 

  • Norton, J. M. et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74 (11), 559–572 (2008).

    Article 

    Google Scholar 

  • Rice, M. C. et al. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand. Genomic Sci. 11 (46), 1–8 (2016).

    MathSciNet 

    Google Scholar 

  • Jiang, Q. Q. & Bakken, L. R. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol. Ecol. 30, 171–186 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanders, T., Fiencke, C., Hüpeden, J., Pfeiffer, E. M. & Spieck, E. Cold adapted Nitrosospira sp.: A potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in Northeast Siberia. Microorganisms 7 (12), 699 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. & Stahl, D. A. Phylogenetic probes for analyzing abundance and Spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62 (6), 2156–2162 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klotz, M. G. & Stein, L. Y. Genomics of ammonia-oxidizing bacteria and insights into their evolution. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 57–94. (Washington, DC, 2011).

  • Kozlowski, J. A., Kits, K. D. & Stein, L. Y. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front. Microbiol. 7, 1090 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koper, T. E., El-Sheikh, A. F., Norton, J. M. & Klotz, M. G. Urease-encoding genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 70 (4), 2342–2348 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tokuda, S. & Hayatsu, M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux. Soil. Sci. Plant. Nutr. 50 (3), 365–374 (2004).

    Article 

    Google Scholar 

  • Hirono, Y. & Nonaka, K. Nitrous oxide emissions from green tea fields in japan: contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil. Sci. Plant. Nutr. 58, 384–392 (2012).

    Article 
    CAS 

    Google Scholar 

  • Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialization and differentiation. Trends Microbiol. 20 (11), 523–531 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. M., Hu, H. W., Shen, J. P. & He, J. Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y., Chapman, S. J., Nicol, G. W. & Yao, H. Nitrification and nitrifiers in acidic soils. Soil. Biol. Biochem. 116, 290–301 (2018).

    Article 
    CAS 

    Google Scholar 

  • French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G. & Bollmann, A. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl. Environ. Microbiol. 78 (16), 5773–5780 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ying, J. et al. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil. Biol. Biochem. 107, 10–18 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fan, D., Fan, K., Yu, C., Lu, Y. & Wang Xiao-chang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Biomed. Biotechnol. 18 (2), 99–108 (2017).

    CAS 

    Google Scholar 

  • Tang, S. et al. The Inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Sci. Total Environ. 778, 146328 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Onodera, Y., Nakagawa, T., Takahashi, R. & Tokuyama, T. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ. 25 (1), 28–35 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, G. et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 5, 1905–1912 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, J. et al. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese loess plateau and their responses to nitrogen inputs. Sci. Total Environ. 635, 240–248 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Banning, N., Maccarone, L., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, J. et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats. Front. Environ. Sci. 10, 976618 (2022).

    Article 

    Google Scholar 

  • Li, X. et al. Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Appl. Soil. Ecol. 157, 103729 (2021).

    Article 

    Google Scholar 

  • De Boer, W., Gunnewiek, P. J. A. K. & Laanbroek, H. J. Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil. Biol. Biochem. 27 (2), 127–132 (1995).

    Article 

    Google Scholar 

  • Walker, N. & Wickramasinghe, K. N. Nitrification and autotrophic nitrifying bacteria in acid tea soils. Soil. Biol. Biochem. 11, 231–236 (1979).

    Article 
    CAS 

    Google Scholar 

  • Jumadi, O. et al. Community structure of ammonia oxidizing bacteria and their potential to produce nitrous oxide and carbon dioxide in acid tea soils. Geomicrobiol. J. 25, 381–389 (2008).

    Article 
    CAS 

    Google Scholar 

  • Yao, H. et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soil. Appl. Environ. Microbiol. 77 (13), 4618–4625 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okamura, K., Takanashi, A., Yamada, T. & Hiraishi, A. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil. J. Phys: Conf. Ser. 352, 012052 (2012).

    Google Scholar 

  • Wang, X. et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil. Biol. Biochem. 84, 28–37 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031–e01018 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lourenço, K. S. et al. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front. Microbiol. 9, 1–11 (2018).

    Article 

    Google Scholar 

  • Pommering-Röser, A. & Koops, H. P. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol. Res. 160, 27–35 (2005).

    Article 

    Google Scholar 

  • Norton, J. M. Diversity and Environmental Distribution of Ammonia-Oxidizing Bacteria. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 39–55. (Washington, DC, 2011).

  • Allison, S. M. & Prosser, J. I. Urease activity in neutrophilic autotrophic ammonia -oxidizing bacteria isolated from acid soils. Soil. Biol. Biochem. 23 (1), 45–51 (1991).

    Article 
    CAS 

    Google Scholar 

  • Thandar, S. M., Ushiki, N., Fujitani, H., Tsuneda, Y. & Sekiguchi & Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1 isolated from autotrophic nitrifying granules of wastewater treatment bioreactor. Front. Microbiol. 7 (1869), 1–14 (2016).

    Google Scholar 

  • Belser, L. W. & Schmidt, E. L. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett. 7, 213–216 (1980).

    Article 
    CAS 

    Google Scholar 

  • Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil. Sci. Plant. Nutr. 39, 219–226 (1993).

    Article 
    CAS 

    Google Scholar 

  • Allison, S. M. & Prosser, J. I. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil. Biol. Biochem. 125 (7), 935–941 (1993).

    Article 

    Google Scholar 

  • De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E. & Laanbroek, H. J. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 57 (12), 3600–3604 (1991).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, I., Dular, U. & Kwok, S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas Europaea cells and extracts. J. Bacteriol. 120 (1), 556–558 (1974).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koper, T. E., Stark, J. M., Habteselassie, M. Y. & Norton, J. M. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol. Ecol. 74 (2), 316–322 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, M. Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berube, P. M. & Stahl, D. A. The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas Europaea. J. Bacteriol. 194 (13), 3448–3456 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, L. Y. Heterotrophic Nitrification and Nitrifier Denitrification. In: Nitrification (eds. Ward, B. B., Arp, D. J., Klotz, M. G.) 95–114. (Washington, DC, 2011).

  • Sedlacek, C. J. et al. Transcriptomic response of Nitrosomonas europaea transitioned from ammonia- to oxygen-limited steady-state growth. mSystems 5 (1), e00562-19 (2020).

  • Cantaro, J. D., Vilbert, A. C. & Lancaster, K. M. Nitrosomonas Europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA. 113 (52), 14704–14709 (2016).

    ADS 

    Google Scholar 

  • Elmore, B. O., Bergmann, D. J., Klotz, M. G. & Hooper, A. B. Cytochromes P460 and c’-beta; a new family of high-spin cytochromes c. FEBS Lett. 581 (5), 911–916 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shaw, L. J. et al. Nitrosospira spp. Can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8 (2), 214–222 (2005).

    Article 

    Google Scholar 

  • IFA. Fertilizer use by crop and country for the 2017–2018 period. International Fertilizer Association (IFA) 2022, Paris, France. Electronic source: (2023). https://www.ifastat.org/consumption/fertilizer-use-by-crop

  • De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil. Biol. Biochem. 33, 853–866 (2001).

    Article 

    Google Scholar 

  • Zorz, J. K., Kozlowski, J. A., Stein, L. Y., Strous, M. & Kleiner, M. Comparative proteomics of three species of ammonia-oxidizing bacteria. Front. Microbiol. 9, 938 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isshiki, R., Fujitani, H. & Tsuneda, S. Transcriptome analysis of the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1 reveals division of labor between aggregates and free-living cells. Microbes Environ. 35 (2), 1–9 (2020).

    Article 

    Google Scholar 

  • Schmidt, E. L. & Belser, L. W. Autotrophic nitrifying bacteria. In: Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties (eds. Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A.) 159–177. (Madison, WI, 1994).

  • Kempers, A. J. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma 12, 201–206 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Keeney, D. R. & Nelson, D. W. Nitrogen–inorganic forms. In: Methods of Soil Analysis: Part 2. Agronomy Monogr. no.9, 2nd ed. (ed. Page, A.L. et al.) 643–687 (Madison, WI, 1982).

  • Cataldo, D. A., Haroon, M., Schrader, L. E. & Youngs, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil. Sci. Plant. Anal. 6, 71–80 (1975).

    Article 
    CAS 

    Google Scholar 

  • Rottahauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712 (1997).

    Article 
    ADS 

    Google Scholar 

  • Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods. 50 (2), 189–203 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10 (5), 1357–1364 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morimoto, S. et al. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types. Microbes Environ. 26 (3), 248–253 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Yang, W., Wang, Y., Tago, K., Tokuda, S. & Hayatsu, M. Comparison of the effects of phenylhydrazine hydrochloride and Dicyandiamide on ammonia-oxidizing bacteria and archaea in andosols. Front. Microbiol. 8, 2226 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ammann, R. I., Krumhokz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Microbiol. 172 (2), 762–770 (1990).

    Google Scholar 

  • Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 46 (5), 2159–2168 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mak, Q. X. C., Wick, R. R., Holt, J. M. & Wang, J. R. Polishing de Novo nanopore assemblies of bacteria and eukaryotes with FMLRC2. Mol. Biol. Evol. 40 (3), msad048 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13 (6), e1005595 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22 (1), 266 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanizawa, Y., Fujisawa, T. & Nakamura, Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinform 34 (6), 1037–1039 (2018).

    Article 
    CAS 

    Google Scholar 

  • Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7 (11), 000685 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinform 30 (9), 1236–1240 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38 (12), 5825–5829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (W1), W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, L. et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Criscuolo, A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Research 9, 1309 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30 (14), 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyax, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for MacOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints. 4, e1900v1 (2016).

  • Verhagen, F. J. M. & Laanbroek, H. J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy limited Chemostats. Appl. Environ. Microbiol. 57 (11), 3255–3263 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bollman, A., French, E. & Laanbroek, H. J. Chapter three – Isolation, cultivation, and characterization of Ammonia-Oxidizing bacteria and archaea adapted to low ammonium concentrations. In: Methods in Enzymology, Research on Nitrification and Related Process, Part A (ed Klotz, M. G.) 55–88 (Amsterdam, 2011).

  • De Mendiburu, F. Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU). Electronic source: (2009). https://github.com/cran/agricolae (2023).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Electronic source: (2021). https://www.R-project.org/ (2023).

  • RStudio: Integrated Development for RStudio Team 2020, RStudio, R. & Boston, M. A. PBC, Electronic source: (2023). http://www.rstudio.com/

  • Stein, L. Y. et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Micriobiol. 9 (12), 2993–3007 (2007).

    Article 
    CAS 

    Google Scholar 

  • Continue Reading