A study on intuitionistic fuzzy generating function using T-Norm, T-Conorm operators to enhance night-time images for autonomous driving system

  • Rosenzweig, J. & Bartl, M. A review and analysis of literature on autonomous driving. E-Journal Making-of Innovation 1–57 (2015).

  • Zhao, J. et al. Autonomous driving system: A comprehensive survey. Exp. Syst. Appl. 242, 122836 (2024).

    Article 

    Google Scholar 

  • Barabas, I., Todoruţ, A., Cordoş, N. & Molea, A. Current challenges in autonomous driving. In IOP confer. Series: Mater. Sci. Eng. 252, 012096 (2017).

    Article 

    Google Scholar 

  • Pham, L.H., Tran, D. N.-N. & Jeon, J.W. Low-light image enhancement for autonomous driving systems using driveretinex-net. In 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1–5 (2020).

  • Lee, Y., Jeon, J., Ko, Y., Jeon, B. & Jeon, M. Task-driven deep image enhancement network for autonomous driving in bad weather. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 13746–13753 (2021).

  • Li, G., Yang, Y., Qu, X., Cao, D. & Li, K. A deep learning based image enhancement approach for autonomous driving at night. Knowledge-Based Syst. 213, 106617 (2021).

    Article 

    Google Scholar 

  • Mandal, G., Bhattacharya, D. & De, P. Real-time fast low-light vision enhancement for driver during driving at night. J. Amb. Intell. Human. Comput. 13, 789–798 (2022).

    Article 

    Google Scholar 

  • Zhao, R., Han, Y. & Zhao, J. End-to-end retinex-based illumination attention low-light enhancement network for autonomous driving at night. Comput. Intell. Neurosci. 2022, 4942420 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, S., Fu, L. & Zhang, F. Infrared image enhancement using convolutional neural networks for auto-driving. Appl. Sci. 13, 12581 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. N-loligan: Unsupervised low-light enhancement gan with an n-net for low-light tunnel images. Digit. Signal Process. 143, 104259 (2023).

    Article 
    ADS 

    Google Scholar 

  • Liu, Y., Wang, Y. & Li, Q. Lane detection based on real-time semantic segmentation for end-to-end autonomous driving under low-light conditions. Digit. Signal Process. 155, 104752 (2024).

    Article 

    Google Scholar 

  • Munaf, S., Bharathi, A. & Jayanthi, A. Fpga-based low-light image enhancement using retinex algorithm and coarse-grained reconfigurable architecture. Sci. Reports 14, 28770 (2024).

    ADS 
    CAS 

    Google Scholar 

  • Mahdizadeh, M., Chen, S. & Ye, P. Illuminating the night: A light source-aware and exposure-balanced low-light enhancement approach for real nighttime scenes. Digital Signal Processing 104999 (2025).

  • Ruan, G. et al. Fine-grained vehicle recognition under low light conditions using efficientnet and image enhancement on lidar point cloud data. Sci. Reports 15, 4691 (2025).

    ADS 
    CAS 

    Google Scholar 

  • Mo, T., Zheng, S., Chan, W.-Y. & Yang, R. Review of ai image enhancement techniques for in-vehicle vision systems under adverse weather conditions. World Electric Vehicle J. 16, 72 (2025).

    Article 

    Google Scholar 

  • Zadeh, L.A. Fuzzy sets. Information and Control (1965).

  • Bloch, I. Fuzzy sets for image processing and understanding. Fuzzy Sets syst. 281, 280–291 (2015).

    Article 
    MathSciNet 

    Google Scholar 

  • Haußecker, H. & Tizhoosh, H. R. Fuzzy image processing. In Computer vision and applications 541–576 (Elsevier, 2000).

    Chapter 

    Google Scholar 

  • Vlachos, I. K. & Sergiadis, G. D. Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157, 1126–1138 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Hanmandlu, M. & Jha, D. An optimal fuzzy system for color image enhancement. IEEE Trans. Image Process. 15, 2956–2966 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Saenko, A., Polte, G. & Musalimov, V. Image enhancement and image quality analysis using fuzzy logic techniques. In 2012 9th International Conference on Communications (COMM), 95–98 (IEEE, 2012).

  • Zhang, D., Qu, S., He, L. & Shi, S. Automatic ridgelet image enhancement algorithm for road crack image based on fuzzy entropy and fuzzy divergence. Opt. Lasers Eng. 47, 1216–1225 (2009).

    Article 

    Google Scholar 

  • Chamorro-Martínez, J., Sánchez, D., Soto-Hidalgo, J. M. & Martínez-Jiménez, P. M. A discussion on fuzzy cardinality and quantification. some applications in image processing. Fuzzy Sets and Systems 257, 85–101 (2014).

  • Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Syst. 20, 87–96 (1986).

    Article 

    Google Scholar 

  • Vlachos, I.K. & Sergiadis, G.D. Intuitionistic fuzzy image processing. Soft Computing in Image Processing: Recent Advances 383–414 (2007).

  • Melo-Pinto, P. et al. Image segmentation using atanassov’s intuitionistic fuzzy sets. Exp. Syst. Appl. 40, 15–26 (2013).

    Article 

    Google Scholar 

  • Balasubramaniam, P. & Ananthi, V. Image fusion using intuitionistic fuzzy sets. Inform. Fusion 20, 21–30 (2014).

    Article 

    Google Scholar 

  • Deng, H., Sun, X., Liu, M., Ye, C. & Zhou, X. Image enhancement based on intuitionistic fuzzy sets theory. IET Image Process. 10, 701–709 (2016).

    Article 

    Google Scholar 

  • Chaira, T. Intuitionistic fuzzy approach for enhancement of low contrast mammogram images. Int. J. Imag. Syst. Technol. 30, 1162–1172 (2020).

    Article 

    Google Scholar 

  • Chaira, T. An intuitionistic fuzzy clustering approach for detection of abnormal regions in mammogram images. J. Digit. Imag. 34, 428–439 (2021).

    Article 

    Google Scholar 

  • Jebadass, J. R. & Balasubramaniam, P. Color image enhancement technique based on interval-valued intuitionistic fuzzy set. Inform. Sci. 653, 119811 (2024).

    Article 

    Google Scholar 

  • Jebadass, J. R. & Balasubramaniam, P. Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization. Soft Comput. 26, 4949–4960 (2022).

    Article 

    Google Scholar 

  • Jebadass, J. R. & Balasubramaniam, P. Low light enhancement algorithm for color images using intuitionistic fuzzy sets with histogram equalization. Multimed. Tools Appl. 81, 8093–8106 (2022).

    Article 

    Google Scholar 

  • Jebadass, J. R. & Balasubramaniam, P. Interval type-2 fuzzy set based block-sbu for image fusion technique. Appl. Soft Comput. 143, 110434 (2023).

    Article 

    Google Scholar 

  • Yager, R. R. On the measure of fuzziness and negation. ii. lattices. Inform. Control 44, 236–260 (1980).

    Article 
    MathSciNet 

    Google Scholar 

  • Selvam, C., Jebadass, R. J. J., Sundaram, D. & Shanmugam, L. A novel intuitionistic fuzzy generator for low-contrast color image enhancement technique. Inform. Fusion 108, 102365 (2024).

    Article 

    Google Scholar 

  • Chinnappan, R.R. & Sundaram, D. A low-light video enhancement approach using novel intuitionistic fuzzy generator. The European Physical Journal Special Topics 1–13 (2024).

  • Ragavendirane, M. & Dhanasekar, S. Low-light image enhancement via new intuitionistic fuzzy generator-based retinex approach. IEEE Access (2025).

  • Khan, M. R., Ullah, K., Karamti, H., Khan, Q. & Mahmood, T. Multi-attribute group decision-making based on q-rung orthopair fuzzy aczel-alsina power aggregation operators. Eng. Appl. Artific. Intell. 126, 106629 (2023).

    Article 

    Google Scholar 

  • Khan, M. R. et al. Some aczel-alsina power aggregation operators based on complex q-rung orthopair fuzzy set and their application in multi-attribute group decision-making. IEEE Access 11, 115110–115125 (2023).

    Article 

    Google Scholar 

  • Khan, M. R., Ullah, K., Khan, Q. & Pamucar, D. Intuitionistic fuzzy dombi aggregation information involving lower and upper approximations. Comput. Appl. Math. 44, 1–45 (2025).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Khan, M. R. et al. Evaluating safety in dublin’s bike-sharing system using the concept of intuitionistic fuzzy rough power aggregation operators. Measurement 253, 117553 (2025).

    Article 

    Google Scholar 

  • Sheela Rani, M. & Dhanasekar, S. Application of type-2 heptagonal fuzzy sets with multiple operators in multi-criteria decision-making for identifying risk factors of zika virus. BMC Infect. Diseas. 25, 450 (2025).

    Article 
    CAS 

    Google Scholar 

  • Sheela, R. M. & Dhanasekar, S. Analyzing risk factors of tuberculosis using type-2 interval-valued trapezoidal fuzzy numbers with einstein aggregation operators extended to mcdm. Heliyon 10, e35997 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaira, T. An improved medical image enhancement scheme using type ii fuzzy set. Appl. Soft Comput. 25, 293–308 (2014).

    Article 

    Google Scholar 

  • Chandra, N. & Bhardwaj, A. Medical image enhancement using modified type ii fuzzy membership function generated by hamacher t-conorm. Soft Computing 1–22 (2024).

  • Wadhwa, A. & Bhardwaj, A. Enhancement of mri images using modified type-2 fuzzy set. Multimedia Tools and Applications 1–16 (2024).

  • Krutsch, R. & Tenorio, D. Histogram equalization. Freescale Semiconductor, Document Number AN4318, Application Note 30 (2011).

  • Choi, D.H., Jang, I.H., Kim, M.H. & Kim, N.C. Color image enhancement using single-scale retinex based on an improved image formation model. In 2008 16th European Signal Processing Conference, 1–5 (IEEE, 2008).

  • Petro, A.B., Sbert, C. & Morel, J.-M. Multiscale retinex. Image processing on line 71–88 (2014).

  • Khorana, A. et al. Choosing the appropriate measure of central tendency: Mean, median, or mode?. Knee Surgery, Sports Traumatol., Arthroscopy 31, 12–15 (2023).

    Article 

    Google Scholar 

  • Klement, E. P., Mesiar, R. & Pap, E. Triangular norms: Basic notions and properties. In Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms 17–60 (Elsevier, 2005).

    Chapter 

    Google Scholar 

  • Yager, R. R. On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980).

    Article 
    MathSciNet 

    Google Scholar 

  • Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982).

    Article 

    Google Scholar 

  • Weber, S. Two integrals and some modified versions–critical remarks. Fuzzy Sets and Syst. 20, 97–105 (1986).

    Article 
    MathSciNet 

    Google Scholar 

  • Oussalah, M. On the use of hamacher’s t-norms family for information aggregation. Inform. Sci. 153, 107–154 (2003).

    Article 
    MathSciNet 

    Google Scholar 

  • Wang, W. & Liu, X. Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans. Fuzzy Syst. 20, 923–938 (2012).

    Article 

    Google Scholar 

  • Yu, F. et al. Bdd100k: A diverse driving dataset for heterogeneous multitask learning (2020). https://arxiv.org/abs/1805.04687. 1805.04687.

  • Karthik, A. & Ghosh, M. Modeling of covid-19 with vaccination and optimal control. The European Physical Journal Special Topics 1–12 (2024).

  • Continue Reading