Artemisinin and partner drug resistance markers in Plasmodium falciparum from Tanzanian paediatric malaria patients, 2016–2022 | Malaria Journal

  • WHO. World malaria report addressing inequity in the global malaria response. Geneva: World Health Organization; 2024. p. 2024.

    Google Scholar 

  • Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, et al. The emergence of artemisinin partial resistance in Africa: how do we respond? Lancet Infect Dis. 2024;24:e591–600.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ishengoma DS, Mandara CI, Bakari C, Fola AA, Madebe RA, Seth MD, et al. Evidence of artemisinin partial resistance in northwestern Tanzania: clinical and molecular markers of resistance. Lancet Infect Dis. 2024;24:1225–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh NV, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19:952–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Malaria: Artemisinin partial resistance. Geneva: World Health Organization; 2025 [cited 2025 Jan 6]. Available from: https://www.who.int/news-room/questions-and-answers/item/artemisinin-resistance

  • Talisuna AO, Karema C, Ogutu B, Juma E, Logedi J, Nyandigisi A, et al. Mitigating the threat of artemisinin resistance in Africa: improvement of drug-resistance surveillance and response systems. Lancet Infect Dis. 2012;12:888–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AA. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep. 2020;10:3500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juliano JJ, Giesbrecht DJ, Simkin A, Fola AA, Lyimo BM, Pereus D, et al. Country wide surveillance reveals prevalent artemisinin partial resistance mutations with evidence for multiple origins and expansion of high level sulfadoxine-pyrimethamine resistance mutations in northwest Tanzania. medRxiv. (preprint), 2023.

  • Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malar J. 2020;19:177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S, et al. Evolution of partial resistance to artemisinins in malaria parasites in Uganda. N Engl J Med. 2023;389:722–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, et al. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J. 2020;19:271.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarah-Matio EM, Guillochon E, Nsango SE, Abate L, Ngou CM, Bouopda GA, et al. Genetic diversity of Plasmodium falciparum and distribution of antimalarial drug resistance mutations in symptomatic and asymptomatic infections. Antimicrob Agents Chemother. 2022;66: e0018822.

    Article 
    PubMed 

    Google Scholar 

  • He Q, Chaillet JK, Labbe F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of antimalarial drug resistance. Elife. 2024;12:RP90888.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Bureau of Statistics. National Climate Change Statistics Report, 2019, Tanzania Mainland. Dodoma, Tanzania; 2020.

  • WHO. Guidelines for malaria [Internet]. Geneva: World Health Organization; 2022 [cited 2025 Mar 13]. Available from: https://www.who.int/publications/i/item/guidelines-for-malaria

  • Koliopoulos P, Kayange NM, Daniel T, Huth F, Gröndahl B, Medina-Montaño GC, et al. Multiplex-RT-PCR-ELISA panel for detecting mosquito-borne pathogens: Plasmodium sp. preserved and eluted from dried blood spots on sample cards. Malar J. 2021;20:66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snounou G. Genotyping of Plasmodium spp. nested PCR. Malar Methods Protoc. 2002;72:103–16.

    Article 
    CAS 

    Google Scholar 

  • Some AF, Bazie T, Zongo I, Yerbanga RS, Nikiema F, Neya C, et al. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasit Vectors. 2018;11:323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aubouy A, Migot-Nabias F, Deloron P. Polymorphism in two merozoite surface proteins of Plasmodium falciparum isolates from Gabon. Malar J. 2003;2:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oboh MA, Ndiaye T, Diongue K, Ndiaye YD, Sy M, Deme AB, et al. Allelic diversity of MSP1 and MSP2 repeat loci correlate with levels of malaria endemicity in Senegal and Nigerian populations. Malar J. 2021;20:38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.

    Article 
    PubMed 

    Google Scholar 

  • Li J, Chen J, Xie D, Monte-Nguba SM, Eyi JU, Matesa RA, et al. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko Island. Equatorial Guinea Pathog Glob Health. 2014;108:339–43.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • StataCorp. Stata Statistical Software: Release 15. College Station (TX): StataCorp LLC; 2017.

  • R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. Available from: https://www.R-project.org/

  • Kang JM, Moon SU, Kim JY, Cho SH, Lin K, Sohn WM, et al. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar. Malar J. 2010;9:131.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yakubu B, Longdet IY, Jen TH, Davou DT, Obishakin E. High-complexity Plasmodium falciparum infections, North Central Nigeria, 2015–2018. Emerg Infect Dis. 2019;25:1330–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakari C, Mandara CI, Madebe RA, Seth MD, Ngasala B, Kamugisha E, et al. Trends of Plasmodium falciparum molecular markers associated with resistance to artemisinins and reduced susceptibility to lumefantrine in Mainland Tanzania from 2016 to 2021. Malar J. 2024;23:71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ajogbasile FV, Oluniyi PE, Kayode AT, Akano KO, Adegboyega BB, Philip C, et al. Molecular profiling of the artemisinin resistance Kelch 13 gene in Plasmodium falciparum from Nigeria. PLoS ONE. 2022;17: e0264548.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boussaroque A, Fall B, Madamet M, Camara C, Benoit N, Fall M, et al. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. Antimicrob Agents Chemother. 2015;60:624–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ndwiga L, Kimenyi KM, Wamae K, Osoti V, Akinyi M, Omedo I, et al. A review of the frequencies of Plasmodium falciparum Kelch 13 artemisinin resistance mutations in Africa. Int J Parasitol Drugs Drug Resist. 2021;16:155–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO, Global Malaria Programme. Artemisinin and artemisinin-based combination therapy resistance [Internet]. Geneva: World Health Organization; 2016. Available from: https://www.who.int/publications/i/item/artemisinin-and-act-resistance

  • Wernsman Young N, Gashema P, Giesbrecht D, Munyaneza T, Maisha F, et al. High frequency of artemisinin partial resistance mutations in the Great Lakes region revealed through rapid pooled deep sequencing. J Infect Dis. 2025;231:269–80.

    Article 
    PubMed 

    Google Scholar 

  • Kakulu RK, Msuya MM, Makora SH, Lucas AM, Kapinga JV, Mwangoka NK, et al. Characterization of population connectivity for enhanced cross-border surveillance of yellow fever at Mutukula and Namanga borders in Tanzania. IJID Reg. 2024;13: 100476.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deane KD, Samwell Ngalya P, Boniface L, Bulugu G, Urassa M. Exploring the relationship between population mobility and HIV risk: evidence from Tanzania. Glob Public Health. 2018;13:173–88.

    Article 
    PubMed 

    Google Scholar 

  • Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Bjorkman A, et al. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis. 2013;207:842–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnadig N, Uhlemann AC, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7:11553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okell LC, Reiter LM, Ebbe LS, Baraka V, Bisanzio D, Watson OJ, et al. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Glob Health. 2018;3: e000999.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marwa KJ, Lyimo E, Konje ET, Kapesa A, Kamugisha E, Swedberg G. Plasmodium falciparum merozoite surface proteins polymorphisms and treatment outcomes among patients with uncomplicated malaria in Mwanza, Tanzania. J Trop Med. 2022;2022:5089143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sondo P, Derra K, Rouamba T, Nakanabo Diallo S, Taconet P, Kazienga A, et al. Determinants of Plasmodium falciparum multiplicity of infection and genetic diversity in Burkina Faso. Parasit Vectors. 2020;13:427.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Budodo R, Mandai SS, Bakari C, Seth MD, Francis F, Chacha GA, et al. Performance of rapid diagnostic tests, microscopy, and qPCR for detection of Plasmodium parasites among community members with or without symptoms of malaria in villages located in North-western Tanzania. Malar J. 2025;24:115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mwesigwa A, Ocan M, Musinguzi B, Nante RW, Nankabirwa JI, Kiwuwa SM, et al. Plasmodium falciparum genetic diversity and multiplicity of infection based on msp-1, msp-2, glurp and microsatellite genetic markers in sub-Saharan Africa: a systematic review and meta-analysis. Malar J. 2024;23:97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading