Proteomic landscape of Alzheimer’s disease: emerging technologies, advances and insights (2021 – 2025) | Molecular Neurodegeneration

  • 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20:3708-3821.

  • Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.

    PubMed 

    Google Scholar 

  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

    PubMed 

    Google Scholar 

  • Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims JR, Brys M. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384:1691–704.

    PubMed 

    Google Scholar 

  • Vaz M, Silva V, Monteiro C, Silvestre S. Role of aducanumab in the treatment of Alzheimer’s disease: challenges and opportunities. Clin Interv Aging. 2022;17:797–810.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurkinen M. Lecanemab (Leqembi) is not the right drug for patients with Alzheimer’s disease. Adv Clin Exp Med. 2023;32:943–7.

    PubMed 

    Google Scholar 

  • Manly JJ, Deters KD. Donanemab for Alzheimer disease—who benefits and who is harmed? JAMA. 2023;330:510–1.

    PubMed 

    Google Scholar 

  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    PubMed 

    Google Scholar 

  • Aisen P, Bateman RJ, Crowther D, Cummings J, Dwyer J, Iwatsubo T, Kosco-Vilbois M, McDade E, Mohs R, Scheltens P, et al. The case for regulatory approval of amyloid-lowering immunotherapies in Alzheimer’s disease based on clearcut biomarker evidence. Alzheimers Dement. 2025;21:e14342.

  • Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain. 2023;146:3969–90.

    PubMed 

    Google Scholar 

  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017;134:171–86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyle PA, Yu L, Wilson RS, Leurgans SE, Schneider JA, Bennett DA. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol. 2018;83:74–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.

    PubMed 

    Google Scholar 

  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–55.

    PubMed 

    Google Scholar 

  • Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, Dey KK, Chen PC, Yang K, Peng J. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16:55.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, Yarbro JM, Han X, Lutz BM, Rao S, et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron. 2020;105:975–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson ECB, Carter EK, Dammer EB, Duong DM, Gerasimov ES, Liu Y, Liu J, Betarbet R, Ping L, Yin L, et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci. 2022;25:213–25.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson ECB, Bian S, Haque RU, Carter EK, Watson CM, Gordon BA, Ping L, Duong DM, Epstein MP, McDade E, et al. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease. Nat Med. 2023;29:1979–88.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E. Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat Commun. 2023;14:4466.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer’s disease and down syndrome. Acta Neuropathol Commun. 2022;10:53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pichet Binette A, Gaiteri C, Wennstrom M, Kumar A, Hristovska I, Spotorno N, Salvado G, Strandberg O, Mathys H, Tsai LH, et al. Proteomic changes in Alzheimer’s disease associated with progressive abeta plaque and tau tangle pathologies. Nat Neurosci. 2024;27:1880–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali M, Timsina J, Western D, Liu M, Beric A, Budde J, Do A, Heo G, Wang L, Gentsch J, et al. Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures across the Alzheimer disease continuum. Neuron. 2025;113:1363-1379-e1369.

    Google Scholar 

  • Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, et al. Human and mouse proteomics reveals the shared pathways in Alzheimer’s disease and delayed protein turnover in the amyloidome. Nat Commun. 2025;16:1533.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener. 2022;17:66.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha H, et al. Pan-neurodegeneration proteomics reveals disease subtypes and molecular signatures in six neurodegenerative disorders. Sneak Peek. 2025. https://doi.org/10.2139/ssrn.5245669.

  • Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75:1895–904.

    PubMed 

    Google Scholar 

  • Doerr A. Targeting with PRM. Nat Methods. 2012;9:950–950.

    PubMed 

    Google Scholar 

  • Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11:1475–88.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, Hauck SM. Multiplatform approach for plasma proteomics: complementarity of olink proximity extension assay technology to mass spectrometry-based protein profiling. J Proteome Res. 2020;20:751–62.

    PubMed 

    Google Scholar 

  • Gold L, Walker JJ, Wilcox SK, Williams S. Advances in human proteomics at high scale with the SOMAscan proteomics platform. N Biotechnol. 2012;29:543–9.

    PubMed 

    Google Scholar 

  • Li J, Van Vranken JG, Pontano Vaites L, Schweppe DK, Huttlin EL, Etienne C, Nandhikonda P, Viner R, Robitaille AM, Thompson AH, et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods. 2020;17:399–404.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zuniga NR, Frost DC, Kuhn K, Shin M, Whitehouse RL, Wei T-Y, He Y, Dawson SL, Pike I, Bomgarden RD, et al. Achieving a 35-plex tandem mass tag reagent set through deuterium incorporation. J Proteome Res. 2024;23:5153–65.

    PubMed 

    Google Scholar 

  • Wang Z, Yu K, Tan H, Wu Z, Cho JH, Han X, Sun H, Beach TG, Peng J. 27-plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer’s disease. Anal Chem. 2020;92:7162–70.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun H, Poudel S, Vanderwall D, Lee DG, Li Y, Peng J. 29-plex tandem mass tag mass spectrometry enabling accurate quantification by interference correction. Proteomics. 2022;22:e2100243.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu D, Yang S, Kavdia K, Sifford JM, Wu Z, Xie B, Wang Z, Pagala VR, Wang H, Yu K, et al. Deep profiling of microgram-scale proteome by tandem mass tag mass spectrometry. J Proteome Res. 2021;20:337–45.

    PubMed 

    Google Scholar 

  • Wang Z, Kavdia K, Dey KK, Pagala VR, Kodali K, Liu D, Lee DG, Sun H, Chepyala SR, Cho JH, et al: High-throughput and deep-proteome profiling by 16-plex tandem mass tag labeling coupled with two-dimensional chromatography and mass spectrometry. J Vis Exp. 2020,162. https://doi.org/10.3791/61684.

  • Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, Kalocsay M, Jané-Valbuena J, Gelfand E, Schweppe DK, Jedrychowski M, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell. 2020;180:387-402.e316.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ting L, Rad R, Gygi SP, Haas W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods. 2011;8:937–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu M, Cho J-H, Kodali K, Pagala V, High AA, Wang H, Wu Z, Li Y, Bi W, Zhang H, et al. Extensive peptide fractionation and y1 ion-based interference detection method for enabling accurate quantification by isobaric labeling and mass spectrometry. Anal Chem. 2017;89:2956–63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaman M, Fu Y, Chen PC, Sun H, Yang S, Wu Z, Wang Z, Poudel S, Serrano GE, Beach TG, et al. Dissecting detergent-insoluble proteome in Alzheimer’s disease by TMTc-corrected quantitative mass spectrometry. Mol Cell Proteomics. 2023;22:100608.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guzman UH, Martinez-Val A, Ye Z, Damoc E, Arrey TN, Pashkova A, Renuse S, Denisov E, Petzoldt J, Peterson AC, et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat Biotechnol. 2024;42:1855–66.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meier F, Brunner A-D, Frank M, Ha A, Bludau I, Voytik E, Kaspar-Schoenefeld S, Lubeck M, Raether O, Bache N, et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat Methods. 2020;17:1229–36.

    PubMed 

    Google Scholar 

  • Meier F, Beck S, Grassl N, Lubeck M, Park MA, Raether O, Mann M. Parallel Accumulation-Serial Fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J Proteome Res. 2015;14:5378–87.

    PubMed 

    Google Scholar 

  • Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M, Goedecke N, Decker J, Kosinski T, Park MA, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018;17:2534–45.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bekker-Jensen DB, Martínez-Val A, Steigerwald S, Rüther P, Fort KL, Arrey TN, Harder A, Makarov A, Olsen JV. A compact quadrupole-orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients. Mol Cell Proteomics. 2020;19:716–29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawashima Y, Nagai H, Konno R, Ishikawa M, Nakajima D, Sato H, Nakamura R, Furuyashiki T, Ohara O. Single-shot 10K proteome approach: over 10,000 protein identifications by data-independent acquisition-based single-shot proteomics with ion mobility spectrometry. J Proteome Res. 2022;21:1418–27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ctortecka C, Clark NM, Boyle BW, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat Commun. 2024;15:5707.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heil LR, Damoc E, Arrey TN, Pashkova A, Denisov E, Petzoldt J, Peterson AC, Hsu C, Searle BC, Shulman N, et al. Evaluating the performance of the astral mass analyzer for quantitative proteomics using data-independent acquisition. J Proteome Res. 2023;22:3290–300.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart HI, Grinfeld D, Giannakopulos A, Petzoldt J, Shanley T, Garland M, Denisov E, Peterson AC, Damoc E, Zeller M, et al. Parallelized acquisition of orbitrap and astral analyzers enables high-throughput quantitative analysis. Anal Chem. 2023;95:15656–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Demichev V, Szyrwiel L, Yu F, Teo GC, Rosenberger G, Niewienda A, Ludwig D, Decker J, Kaspar-Schoenefeld S, Lilley KS, et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun. 2022;13:3944.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Derks J, Leduc A, Wallmann G, Huffman RG, Willetts M, Khan S, Specht H, Ralser M, Demichev V, Slavov N. Increasing the throughput of sensitive proteomics by plexDIA. Nat Biotechnol. 2023;41:50–9.

    PubMed 

    Google Scholar 

  • Derks J, Slavov N. Strategies for increasing the depth and throughput of protein analysis by plexDIA. J Proteome Res. 2023;22:697–705.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thielert M, Itang EC, Ammar C, Rosenberger FA, Bludau I, Schweizer L, Nordmann TM, Skowronek P, Wahle M, Zeng WF. Robust dimethyl-based multiplex-DIA doubles single-cell proteome depth via a reference channel. Mol Syst Biol. 2023;19:e11503.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nilsson J, Gobom J, Sjödin S, Brinkmalm G, Ashton NJ, Svensson J, Johansson P, Portelius E, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer’s disease. Alzheimers Dement. 2021;13:e12179.

    Google Scholar 

  • Tao QQ, Cai X, Xue YY, Ge W, Yue L, Li XY, Lin RR, Peng GP, Jiang W, Li S, et al. Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. Innovation. 2024;5:100544.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Montoliu-Gaya L, Ashton NJ, Benedet AL, Rodriguez JL, Brinkmalm G, Karikari TK, Kern S, Rosa-Neto P, Zetterberg H, Blennow K. Mass spectrometric measurement of six site-specific tau phosphorylations in CSF and blood of Alzheimer’s disease patients. Alzheimers Dement. 2021;17:e055985.

    Google Scholar 

  • Gao Y, Li J, Hu K, Wang S, Yang S, Ai Q, Yan J. Phosphoproteomic analysis of APP/PS1 mice of Alzheimer’s disease by DIA based mass spectrometry analysis with PRM verification. J Proteom. 2024;299:105157.

    Google Scholar 

  • Camporesi E, Nilsson J, Vrillon A, Cognat E, Hourregue C, Zetterberg H, Blennow K, Becker B, Brinkmalm A, Paquet C, Brinkmalm G. Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry. EBioMedicine. 2022;75:103793.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang L, Xuan C, Yu C, Zheng P, Yan J. Diagnostic Model of Alzheimer’s disease in the elderly based on protein and metabolic biomarkers. J Alzheimers Dis. 2022;85:1163–74.

    PubMed 

    Google Scholar 

  • McKetney J, Panyard DJ, Johnson SC, Carlsson CM, Engelman CD, Coon JJ. Pilot proteomic analysis of cerebrospinal fluid in Alzheimer’s disease. Proteomics Clin Appl. 2021;15:e2000072.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haslam DE, Li J, Dillon ST, Gu X, Cao Y, Zeleznik OA, Sasamoto N, Zhang X, Eliassen AH, Liang L. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. 2022;22:2100170.

    Google Scholar 

  • Guo Y, You J, Zhang Y, Liu WS, Huang YY, Zhang YR, Zhang W, Dong Q, Feng JF, Cheng W, Yu JT. Plasma proteomic profiles predict future dementia in healthy adults. Nat Aging. 2024;4:247–60.

    PubMed 

    Google Scholar 

  • Timsina J, Gomez-Fonseca D, Wang L, Do A, Western D, Alvarez I, Aguilar M, Pastor P, Henson RL, Herries E. Comparative analysis of Alzheimer’s disease cerebrospinal fluid biomarkers measurement by multiplex SOMAscan platform and immunoassay-based approach 1. J Alzheimers Dis. 2022;89:193–207.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dammer EB, Ping L, Duong DM, Modeste ES, Seyfried NT, Lah JJ, Levey AI, Johnson ECB. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res Ther. 2022;14:174.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaetani L, Bellomo G, Parnetti L, Blennow K, Zetterberg H, Di Filippo M. Neuroinflammation and Alzheimer’s disease: a machine learning approach to CSF proteomics. Cells. 1930;2021:10.

    Google Scholar 

  • Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, Grundberg I, Pettersson E, Westerberg C, Liljeroth E, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021;20:100168.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang Y, Zhou X, Ip FC, Chan P, Chen Y, Lai NCH, Cheung K, Lo RMN, Tong EPS, Wong BWY, et al. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging. Alzheimers Dement. 2022;18:88–102.

    PubMed 

    Google Scholar 

  • Tokuoka SM, Hamano F, Kobayashi A, Adachi S, Andou T, Natsume T, Oda Y. Plasma proteomics and lipidomics facilitate elucidation of the link between Alzheimer’s disease development and vessel wall fragility. Sci Rep. 2024;14:19901.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rooney MR, Chen J, Ballantyne CM, Hoogeveen RC, Boerwinkle E, Yu B, Walker KA, Schlosser P, Selvin E, Chatterjee N, et al. Plasma proteomic comparisons change as coverage expands for SomaLogic and Olink. MedRxiv. 2024. https://doi.org/10.1101/2024.07.11.24310161.

  • Candia J. SomaScan Bioinformatics: Normalization, Quality Control, and Assessment of Pre-Analytical Variation. Methods Mol Biol. 2025;2929:107-27.

  • Candia J, Fantoni G, Delgado-Peraza F, Shehadeh N, Tanaka T, Moaddel R, Walker KA, Ferrucci L. Variability of 7K and 11K somascan plasma proteomics assays. J Proteome Res. 2024;23:5531–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz DH, Robbins JM, Deng S, Tahir UA, Bick AG, Pampana A, Yu Z, Ngo D, Benson MD, Chen Z-Z, et al. Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci Adv. 2022;8:eabm5164.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Candia J, Daya GN, Tanaka T, Ferrucci L, Walker KA. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci Rep. 2022;12:17147.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Frohlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C, Schmidt A, Schilling O. Data-Independent acquisition: a milestone and prospect in clinical mass spectrometry-based proteomics. Mol Cell Proteomics. 2024;23:100800.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nordmann TM, Mund A, Mann M. A new understanding of tissue biology from MS-based proteomics at single-cell resolution. Nat Methods. 2024;21:2220–2.

    PubMed 

    Google Scholar 

  • Gatto L, Aebersold R, Cox J, Demichev V, Derks J, Emmott E, Franks AM, Ivanov AR, Kelly RT, Khoury L, et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat Methods. 2023;20:375–86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatia HS, Brunner A-D, Öztürk F, Kapoor S, Rong Z, Mai H, Thielert M, Ali M, Al-Maskari R, Paetzold JC. Spatial proteomics in three-dimensional intact specimens. Cell. 2022;185:5040-5058. e5019.

    PubMed 

    Google Scholar 

  • Mund A, Coscia F, Kriston A, Hollandi R, Kovacs F, Brunner AD, Migh E, Schweizer L, Santos A, Bzorek M, et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat Biotechnol. 2022;40:1231–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu B, He R, Pang K, Wang G, Wang N, Zhu W, Sui X, Teng H, Liu T, Zhu J, et al. High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning. Cell. 2025;188:734-748 e722.

    PubMed 

    Google Scholar 

  • Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR 3rd, Lipton SA. Single-cell patch-clamp/proteomics of human Alzheimer’s disease iPSC-derived excitatory neurons versus isogenic wild-type controls suggests novel causation and therapeutic targets. Adv Sci. 2024;11:e2400545.

    Google Scholar 

  • Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J. Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem. 2004;279:37061–8.

    PubMed 

    Google Scholar 

  • Lutz BM, Peng J. Deep profiling of the aggregated proteome in alzheimer’s disease: from pathology to disease mechanisms. Proteomes. 2018;6:46.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods. 2021;18:133–43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun X, Sun H, Han X, Chen PC, Jiao Y, Wu Z, Zhang X, Wang Z, Niu M, Yu K, et al. Deep single-cell-type proteome profiling of mouse brain by nonsurgical AAV-mediated proximity labeling. Anal Chem. 2022;94:5325–34.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi MR, Phinney BS, Bu G, et al. Probe-dependent Proximity Profiling (ProPPr) uncovers similarities and differences in phospho-tau-associated proteomes between tauopathies. Mol Neurodegener. 2025;20:32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez-Castelao B, Schanzenbacher CT, Hanus C, Glock C, Tom Dieck S, Dorrbaum AR, Bartnik I, Nassim-Assir B, Ciirdaeva E, Mueller A, et al. Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat Biotechnol. 2017;35:1196–201.

    PubMed 

    Google Scholar 

  • Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems. Annu Rev Phys Chem. 2021;72:307–29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, Goltsev Y, Schürch CM, Nolan GP. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16:3802–35.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K, McCaffrey E, Marquez D, Angoshtari R, Greenwald NF, Fienberg H. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci Adv. 2019;5:eaax5851.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong F, Ge W, Ma C. Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimers Dement. 2019;15:429–40.

    PubMed 

    Google Scholar 

  • Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M, Safar J, Ueberheide B, Wisniewski T. Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain. 2020;143:2803–17.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muraoka S, DeLeo AM, Sethi MK, Yukawa-Takamatsu K, Yang Z, Ko J, Hogan JD, Ruan Z, You Y, Wang Y, et al. Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimers Dement. 2020;16:896–907.

    PubMed 

    Google Scholar 

  • Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y, Bennett DA, Schneider JA, Petyuk VA, Kitchen RR, et al. Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging. 2021;105:99–114.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Krivinko JM, DeChellis-Marks MR, Zeng L, Fan P, Lopez OL, Ding Y, Wang L, Kofler J, MacDonald ML, Sweet RA. Targeting the post-synaptic proteome has therapeutic potential for psychosis in Alzheimer Disease. Commun Biol. 2023;6:598.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hesse R, Hurtado ML, Jackson RJ, Eaton SL, Herrmann AG, Colom-Cadena M, Tzioras M, King D, Rose J, Tulloch J, et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol Commun. 2019;7:214.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen PC, Han X, Shaw TI, Fu Y, Sun H, Niu M, Wang Z, Jiao Y, Teubner BJW, Eddins D, et al. Alzheimer’s disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment. Nat Aging. 2022;2:923–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai B, Hales CM, Chen P-C, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci USA. 2013;110:16562–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, Fatou B, Guise AJ, Cheng L, Takeda S, et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell. 2020;183:1699-1713.e1613.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Ma C, Chin LS, Li L. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer’s disease. Sci Adv. 2020;6:eabc5802.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abreha MH, Dammer EB, Ping L, Zhang T, Duong DM, Gearing M, Lah JJ, Levey AI, Seyfried NT. Quantitative analysis of the brain ubiquitylome in Alzheimer’s disease. Proteomics. 2018;18:e1800108.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morshed N, Lee MJ, Rodriguez FH, Lauffenburger DA, Mastroeni D, White FM. Quantitative phosphoproteomics uncovers dysregulated kinase networks in Alzheimer’s disease. Nat Aging. 2021;1:550–65.

    PubMed 

    Google Scholar 

  • Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26:769–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eimer WA, Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ 42 accumulation and caspase-3 activation. Mol Neurodegener. 2013;8:1–12.

    Google Scholar 

  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC. Single app knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.

    PubMed 

    Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.

    PubMed 

    Google Scholar 

  • Ayyadevara S, Ganne A, Balasubramaniam M, Shmookler Reis RJ. Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration. Metab Brain Dis. 2022;37:147–52.

    PubMed 

    Google Scholar 

  • Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Giusti Pedrosa A, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, et al. Comparison of the amyloid plaque proteome in down syndrome, early-onset Alzheimer’s disease, and late-onset Alzheimer’s disease. Acta Neuropathol. 2025;149:9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffiths J, Schneegans E, Whitwell H, Qiu Z, Notman B, Cheung D, Willumsen N, Matthews PM, Grant SGN, Jackson JS. A synaptic-astrocytic proteomic signature associated with synaptopathy in Alzheimer’s Disease. bioRxiv. 2025. https://doi.org/10.1101/2025.01.23.634408.

  • Mohallem R, Schaser AJ, Aryal UK. Molecular signatures of neurodegenerative diseases identified by proteomic and phosphoproteomic analyses in aging mouse brain. Mol Cell Proteomics. 2024;23:100819.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suttapitugsakul S, Stavenhagen K, Donskaya S, Bennett DA, Mealer RG, Seyfried NT, Cummings RD. Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain. Mol Cell Proteomics. 2022;21:100433.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer’s disease. Sci Adv. 2024;10:eadk6911.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17:5–21.

    PubMed 

    Google Scholar 

  • Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(633–644):e612.

    Google Scholar 

  • Poudel S, Vanderwall D, Yuan ZF, Wu Z, Peng J, Li Y. JUMPptm: Integrated software for sensitive identification of post-translational modifications and its application in Alzheimer’s disease study. Proteomics. 2022;23:e2100369.

  • Wenger K, Viode A, Schlaffner CN, van Zalm P, Cheng L, Dellovade T, Langlois X, Bannon A, Chang R, Connors TR, et al. Common mouse models of tauopathy reflect early but not late human disease. Mol Neurodegener. 2023;18:10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M, Cohen M, Haldiman T, Kim C, Han X, et al. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol. 2017;133:933–54.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, Richards P, Jones SA, Shridhar V, Clausen T. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci USA. 2005;102:6021–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen S, Puri A, Bell B, Fritsche J, Palacios HH, Balch M, Sprunger ML, Howard MK, Ryan JJ, Haines JN, et al. HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species. Nat Commun. 2024;15:2436.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lourenço F, Galvan V, Fombonne J, Corset V, Llambi F, Müller U, Bredesen D, Mehlen P. Netrin-1 interacts with amyloid precursor protein and regulates amyloid-β production. Cell Death Differ. 2009;16:655–63.

    PubMed 

    Google Scholar 

  • Zamani E, Parviz M, Roghani M, Hosseini M, Mohseni-Moghaddam P, Nikbakhtzadeh M. Netrin-1 protects the SH-SY5Y cells against amyloid beta neurotoxicity through NF-κB/Nrf2 dependent mechanism. Mol Biol Rep. 2020;47:9271–7.

    PubMed 

    Google Scholar 

  • Chen G, Kang SS, Wang Z, Ahn EH, Xia Y, Liu X, Sandoval IM, Manfredsson FP, Zhang Z, Ye K. Netrin-1 receptor UNC5C cleavage by active δ-secretase enhances neurodegeneration, promoting Alzheimer’s disease pathologies. Sci Adv. 2021;7:eabe4499.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer’s disease neuropathology and delays Aβ aggregation. Acta Neuropathol. 2024;148:72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips J, et al. Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer’s disease. Cell Rep Med. 2024;5:101669.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaman M, Yang S, Huang Y, Yarbro JM, Hao Y, Wang Z, Liu D, Harper KE, Soliman H, Hemphill A, et al. Midkine Attenuates Aβ Fibril Assembly and Amyloid Plaque Formation. bioRxiv. 2025. https://doi.org/10.1101/2025.03.20.644383.

  • Yasuhara O, Muramatsu H, Kim S, Muramatsu T, Maruta H, McGeer P. Midkine, a novel neurotrophic factor, is present in senile plaques of Alzheimer disease. Biochem Biophys Res Commun. 1993;192:246–51.

    PubMed 

    Google Scholar 

  • Muramatsul H, Yokoi K, Chen L, Ichihara-Tanaka K, Kimura T, Muramatsu T. Midkine as a factor to counteract the deposition of amyloid β-peptide plaques: in vitro analysis and examination in knockout mice. Int Arch Med. 2011;4:1–9.

    Google Scholar 

  • Esteve P, Rueda-Carrasco J, Inés Mateo M, Martin-Bermejo MJ, Draffin J, Pereyra G, Sandonís Á, Crespo I, Moreno I, Aso E, et al. Elevated levels of secreted-frizzled-related-protein 1 contribute to Alzheimer’s disease pathogenesis. Nat Neurosci. 2019;22:1258–68.

    PubMed 

    Google Scholar 

  • Rueda-Carrasco J, Martin-Bermejo MJ, Pereyra G, Mateo MI, Borroto A, Brosseron F, Kummer MP, Schwartz S, López-Atalaya JP, Alarcon B, et al. SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep. 2021;22:e51696.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martens YA, Zhao N, Liu C-C, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110:1304–17.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, et al. Apolipoprotein E aggregation in microglia initiates Alzheimer’s disease pathology by seeding β-amyloidosis. Immunity. 2024;57:2651-2668.e2612.

    PubMed 

    Google Scholar 

  • Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, Wiltfang J, Wirths O. Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun. 2018;6:108.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marques AR, Gabriel TL, Aten J, van Roomen CP, Ottenhoff R, Claessen N, Alfonso P, Irún P, Giraldo P, Aerts JM. Gpnmb is a potential marker for the visceral pathology in Niemann-Pick type C disease. PLoS One. 2016;11:e0147208.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu M, Zhu J, Zheng J, Han X, Jiang L, Tong X, Ke Y, Guo Z, Huang W, Cong J, et al. GPNMB and ATP6V1A interact to mediate microglia phagocytosis of multiple types of pathological particles. Cell Rep. 2025;44:115343.

    PubMed 

    Google Scholar 

  • Hu Y, Wang X, Zhao Z, Liu M, Ren X, Xian X, Liu C, Wang Q. The downregulation of ITGAX exacerbates amyloid-β plaque deposition in Alzheimer’s disease by increasing polarization of M1 microglia. J Alzheimers Dis. 2024;100:657–73.

    PubMed 

    Google Scholar 

  • Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, Duong DM, Pennington MW, Lah JJ, Seyfried NT, Levey AI. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener. 2018;13:24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu B, Liu Y, Hwang S, Archuleta K, Huang H, Campos A, Murad R, Piña-Crespo J, Xu H, Huang TY. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol Neurodegener. 2022;17:58.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhandapani R, Neri M, Bernhard M, Brzak I, Schweizer T, Rudin S, Joller S, Berth R, Kernen J, Neuhaus A, et al. Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer’s disease. Cell Rep. 2022;39:110883.

    PubMed 

    Google Scholar 

  • Cullell N, Caruana G, Elias-Mas A, Delgado-Sanchez A, Artero C, Buongiorno MT, Almería M, Ray NJ, Correa SAL, Krupinski J. Glymphatic system clearance and Alzheimer’s disease risk: a CSF proteome-wide study. Alzheimers Res Ther. 2025;17:31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yadav H, Bakshi A, Anamika, Singh V, Paul P, Murugan NA, Maurya SK. Co-localization and co-expression of Olfml3 with Iba1 in brain of mice. J Neuroimmunol. 2024;394:578411

  • Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol. 2021;74:548–52.

    PubMed 

    Google Scholar 

  • Miyake K, Yamashita Y, Ogata M, Sudo T, Kimoto M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol. 1995;154:3333–40.

    PubMed 

    Google Scholar 

  • Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol. 2005;6:571–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y, Zhou Y, Bai Y, Jia K, Zhang H, Chen Q, Song M, Dai Y, Shi J, Chen Z, et al. Macrophage-derived CTSS drives the age-dependent disruption of the blood-CSF barrier. Neuron. 2025;113:1082–97.

    PubMed 

    Google Scholar 

  • Lin L, Wu Z, Luo H, Huang Y. Cathepsin-mediated regulation of alpha-synuclein in Parkinson’s disease: a Mendelian randomization study. Front Aging Neurosci. 2024;16:1394807.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo T, et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 2017;4:60-72.e64.

    PubMed 

    Google Scholar 

  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi QQ, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. 2017;9:eaaf6295.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurst C, Pugh DA, Abreha MH, Duong DM, Dammer EB, Bennett DA, Herskowitz JH, Seyfried NT. Integrated proteomics to understand the role of neuritin (NRN1) as a mediator of cognitive resilience to Alzheimer’s disease. Mol Cell Proteomics. 2023;22:100542.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Antonell A, Lladó A, Altirriba J, Botta-Orfila T, Balasa M, Fernández M, Ferrer I, Sánchez-Valle R, Molinuevo JL. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer’s disease. Neurobiol Aging. 2013;34:1772–8.

    PubMed 

    Google Scholar 

  • Beckmann ND, Lin W-J, Wang M, Cohain AT, Charney AW, Wang P, Ma W, Wang Y-C, Jiang C, Audrain M, et al. Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease. Nat Commun. 2020;11:3942.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou J, Wade SD, Graykowski D, Xiao MF, Zhao B, Giannini LAA, Hanson JE, van Swieten JC, Sheng M, Worley PF, Dejanovic B. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci Transl Med. 2023;15:eadf0141.

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Zalm PW, Ahmed S, Fatou B, Schreiber R, Barnaby O, Boxer A, Zetterberg H, Steen JA, Steen H. Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers. Cell Rep Med. 2023;4:101005.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok AHYS, Lleo A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, et al. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer s disease. Nat Commun. 2023;14:5635.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Campo M, Quesada C, Vermunt L, Peeters CFW, Hok AHYS, Trieu C, Braber AD, Verberk IMW, Visser PJ, Tijms BM, et al. CSF proteins of inflammation, proteolysis and lipid transport define preclinical AD and progression to AD dementia in cognitively unimpaired individuals. Mol Neurodegener. 2024;19:82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Campo M, Peeters CFW, Johnson ECB, Vermunt L, Hok AHYS, van Nee M, Chen-Plotkin A, Irwin DJ, Hu WT, Lah JJ, et al. CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. Nat Aging. 2022;2:1040–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tijms BM, Vromen EM, Mjaavatten O, Holstege H, Reus LM, van der Lee S, Wesenhagen KEJ, Lorenzini L, Vermunt L, Venkatraghavan V, et al. Cerebrospinal fluid proteomics in patients with Alzheimer’s disease reveals five molecular subtypes with distinct genetic risk profiles. Nat Aging. 2024;4:33–47.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21:66–77.

    PubMed 

    Google Scholar 

  • Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer’s disease. Front Aging Neurosci. 2024;16:1380237.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. 2021;11:27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee P, Pedrini S, Doecke JD, Thota R, Villemagne VL, Dore V, Singh AK, Wang P, Rainey-Smith S, Fowler C, et al. Plasma Abeta42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: a cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement. 2023;19:1117–34.

    PubMed 

    Google Scholar 

  • Palmqvist S, Stomrud E, Cullen N, Janelidze S, Manuilova E, Jethwa A, Bittner T, Eichenlaub U, Suridjan I, Kollmorgen G, et al. An accurate fully automated panel of plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023;19:1204–15.

    PubMed 

    Google Scholar 

  • Gonzalez-Ortiz F, Turton M, Kac PR, Smirnov D, Premi E, Ghidoni R, Benussi L, Cantoni V, Saraceno C, Rivolta J, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain. 2023;146:1152–65.

    PubMed 

    Google Scholar 

  • Brickman AM, Manly JJ, Honig LS, Sanchez D, Reyes-Dumeyer D, Lantigua RA, Lao PJ, Stern Y, Vonsattel JP, Teich AF, et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer’s disease biomarkers in a multi-ethnic, community study. Alzheimers Dement. 2021;17:1353–64.

    PubMed 

    Google Scholar 

  • Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, Wang X, Bai B, Jiao Y, Chepyala SR, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15:43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dey KK, Wang H, Niu M, Bai B, Wang X, Li Y, Cho JH, Tan H, Mishra A, High AA, et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics. 2019;16:16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lacar B, Ferdosi S, Alavi A, Stukalov A, Venkataraman GR, de Geus M, Dodge H, Wu CY, Kivisakk P, Das S, et al. Identification of novel biomarkers for Alzheimer’s disease and related dementias using unbiased plasma proteomics. bioRxiv. 2024. https://doi.org/10.1101/2024.01.05.574446.

  • Cai H, Pang Y, Wang Q, Qin W, Wei C, Li Y, Li T, Li F, Wang Q, Li Y, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer’s disease. Alzheimers Res Ther. 2022;14:181.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Soares Martins T, Marcalo R, da Cruz ESCB, Trindade D, Catita J, Amado F, Melo T, Rosa IM, Vogelgsang J, Wiltfang J, et al. Novel exosome biomarker candidates for Alzheimer’s disease unravelled through mass spectrometry analysis. Mol Neurobiol. 2022;59:2838–54.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Francois M, Karpe A, Liu JW, Beale D, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Doecke J, et al. Salivaomics as a potential tool for predicting Alzheimer’s disease during the early stages of neurodegeneration. J Alzheimers Dis. 2021;82:1301–13.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eldem E, Barve A, Sallin O, Foucras S, Annoni JM, Schmid AW, Alberi Auber L. Salivary proteomics identifies transthyretin as a biomarker of early dementia conversion. J Alzheimers Dis Rep. 2022;6:31–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Contini C, Fadda L, Lai G, Masala C, Olianas A, Castagnola M, Messana I, Iavarone F, Bizzarro A, Masullo C, et al. A top-down proteomic approach reveals a salivary protein profile able to classify Parkinson’s disease with respect to Alzheimer’s disease patients and to healthy controls. Proteomics. 2024;24:e2300202.

    PubMed 

    Google Scholar 

  • Rajendran K, Krishnan UM. Biomarkers in Alzheimer’s disease. Clin Chim Acta. 2024;562:119857.

    PubMed 

    Google Scholar 

  • Lee S, Kim E, Moon CE, Park C, Lim JW, Baek M, Shin MK, Ki J, Cho H, Ji YW, Haam S. Amplified fluorogenic immunoassay for early diagnosis and monitoring of Alzheimer’s disease from tear fluid. Nat Commun. 2023;14:8153.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karkkainen V, Hannonen S, Rusanen M, Lehtola JM, Saari T, Uusitalo H, Leinonen V, Thiede B, Kaarniranta K, Koivisto AM, Utheim T. Tear fluid reflects the altered protein expressions of Alzheimer’s disease patients in proteins involved in protein repair and clearance system or the regulation of cytoskeleton. J Alzheimers Dis. 2024. https://doi.org/10.1177/13872877241295315.

  • Yuan C, Shen J, Huang Y, Wu M, Zheng Y, Guo T, Xu X. Tear proteomic signature associated with mild cognitive impairment and dementia: an exploratory analysis. Alzheimers Dement. 2024;20:e089992.

    Google Scholar 

  • Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics. 2024;21:14.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Sun Y, Wang Y, Jia S, Qiao Y, Zhou Z, Shao W, Zhang X, Guo J, Zhang B, et al. Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning. Alzheimers Res Ther. 2023;15:191.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24:971–83.

    PubMed 

    Google Scholar 

  • Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, Fernandez MV, Wang F, Bradley JL, Eiffert B, Bahena JA, et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24:1302–12.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, Gunnarsdottir K, Helgason A, Oddsson A, Halldorsson BV, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53:1712–21.

    PubMed 

    Google Scholar 

  • Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson OT, Gunnarsdottir K, Olafsdottir TA, Halldorsson BV, Olason PI, Zink F, et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature. 2023;622:348–58.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, Surendran P, Mahajan A, Robins C, Vasquez-Grinnell SG, et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature. 2023;622:329–38.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.

    PubMed 

    Google Scholar 

  • Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347:664–7.

    PubMed 

    Google Scholar 

  • Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–50.

    PubMed 

    Google Scholar 

  • Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, Dammer EB, Robins C, Beach TG, Reiman EM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. 2021;53:143–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sung YJ, Yang C, Norton J, Johnson M, Fagan A, Bateman RJ, Perrin RJ, Morris JC, Farlow MR, Chhatwal JP, et al. Proteomics of brain, CSF, and plasma identifies molecular signatures for distinguishing sporadic and genetic Alzheimer’s disease. Sci Transl Med. 2023;15:eabq5923.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Western D, Timsina J, Wang L, Wang C, Yang C, Phillips B, Wang Y, Liu M, Ali M, Beric A, et al. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer’s disease. Nat Genet. 2024;56:2672–84.

    PubMed 

    Google Scholar 

  • Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, Li Z, Del-Aguila JL, Dube U, Farias FG, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;11:eaau2291.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu T, Liu Q, Dai Q, Parrish RL, Buchman AS, Tasaki S, Seyfried NT, Wang Y, Bennett DA, De Jager PL, et al. Proteome-wide association studies using summary pQTL data of three tissues identified 30 risk genes of Alzheimer’s disease dementia. medRxiv. 2024. https://doi.org/10.1101/2024.03.28.24305044.

  • Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Chepyala SR, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, et al. Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions. Cell. 2025;188:2267–87.

    PubMed 

    Google Scholar 

  • Zhou Y, Fang J, Bekris LM, Kim YH, Pieper AA, Leverenz JB, Cummings J, Cheng F. AlzGPS: a genome-wide positioning systems platform to catalyze multi-omics for Alzheimer’s drug discovery. Alzheimers Res Ther. 2021;13:1–13.

    Google Scholar 

  • Fernandez MV, Liu M, Beric A, Johnson M, Cetin A, Patel M, Budde J, Kohlfeld P, Bergmann K, Lowery J. Genetic and multi-omic resources for Alzheimer disease and related dementia from the knight Alzheimer disease research center. Sci data. 2024;11:768.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iturria-Medina Y, Adewale Q, Khan AF, Ducharme S, Rosa-Neto P, O’Donnell K, Petyuk VA, Gauthier S, De Jager PL, Breitner J. Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer’s disease progression and heterogeneity. Sci Adv. 2022;8:eabo6764.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eteleeb AM, Novotny BC, Tarraga CS, Sohn C, Dhungel E, Brase L, Nallapu A, Buss J, Farias F, Bergmann K. Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer’s disease. PLoS Biol. 2024;22:e3002607.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mann M, Kumar C, Zeng W-F, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12:759–70.

    PubMed 

    Google Scholar 

  • Ji Y, Lotfollahi M, Wolf FA, Theis FJ. Machine learning for perturbational single-cell omics. Cell Syst. 2021;12:522–37.

    PubMed 

    Google Scholar 

  • Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell. 2024;187:4488–519.

    PubMed 

    Google Scholar 

  • Ctortecka C, Mechtler K. The rise of single-cell proteomics. Anal Sci Adv. 2021;2:84–94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras A-C, Warscheid B. Subcellular proteomics. Nat Rev Methods Primers. 2021;1:32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathys H, Boix CA, Akay LA, Xia Z, Davila-Velderrain J, Ng AP, Jiang X, Abdelhady G, Galani K, Mantero J. Single-cell multiregion dissection of Alzheimer’s disease. Nature. 2024;632:858–68.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol Adv. 2021;49:107739.

    PubMed 

    Google Scholar 

  • Cohen AA, Ferrucci L, Fülöp T, Gravel D, Hao N, Kriete A, Levine ME, Lipsitz LA, Olde Rikkert MG, Rutenberg A. A complex systems approach to aging biology. Nat Aging. 2022;2:580–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer. 2024;24:171–91.

    PubMed 

    Google Scholar 

  • Continue Reading