Gilbert J, Blaser MJ, Caporaso JG, Jansson J, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24:392–400.
Google Scholar
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.
Google Scholar
de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71:1020–32.
Google Scholar
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.
Google Scholar
Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129:4050–7.
Google Scholar
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.
Google Scholar
Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics. 2018;141: e20172437.
Google Scholar
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.
Google Scholar
Pattaroni C, Watzenboeck ML, Schneidegger S, Kieser S, Wong NC, Bernasconi E, et al. Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe. 2018;24:857-865.e4.
Google Scholar
Wu BG, Sulaiman I, Tsay J-CJ, Perez L, Franca B, Li Y, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae. Am J Respir Crit Care Med. 2021;203:1099–111.
Google Scholar
Cyr-Depauw C, Hurskainen M, Vadivel A, Mižíková I, Lesage F, Thébaud B. Characterization of the innate immune response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatr Res. 2021;89:803–13.
Google Scholar
Wallace B, Peisl A, Seedorf G, Nowlin T, Kim C, Bosco J, et al. Anti–sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2018;197:776–87.
Google Scholar
Dong Y, Rivetti S, Lingampally A, Tacke S, Kojonazarov B, Bellusci S, et al. Insights into the black box of intra-amniotic infection and its impact on the premature lung: from clinical and preclinical perspectives. Int J Mol Sci. 2022;23:9792.
Google Scholar
DeMauro SB. Neurodevelopmental outcomes of infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2021;56:3509–17.
Google Scholar
Wang Y, Liu S, Lu M, Huang T, Huang L. Neurodevelopmental outcomes of preterm with necrotizing enterocolitis: a systematic review and meta-analysis. Eur J Pediatr. 2024;183:3147–58.
Google Scholar
Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292:2357–65.
Google Scholar
Diggikar S, Gurumoorthy P, Trif P, Mudura D, Nagesh NK, Galis R, et al. Retinopathy of prematurity and neurodevelopmental outcomes in preterm infants: a systematic review and meta-analysis. Front Pediatr. 2023;11:1055813.
Google Scholar
Horbar JD, Greenberg LT, Buzas JS, Ehret DEY, Soll RF, Edwards EM. Trends in mortality and morbidities for infants born 24 to 28 weeks in the US: 1997–2021. Pediatrics. 2024;153: e2023064153.
Google Scholar
Hong HK, Lee HJ, Ko JH, Park JH, Park JY, Choi CW, et al. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity. J Neuroinflammation. 2014;11:87.
Google Scholar
Young KC, Del Moral T, Claure N, Vanbuskirk S, Bancalari E. The association between early tracheal colonization and bronchopulmonary dysplasia. J Perinatol. 2005;25:403–7.
Google Scholar
Lauer T, Behnke J, Oehmke F, Baecker J, Gentil K, Chakraborty T, et al. Bacterial colonization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g. J Clin Med. 2020;9:2240.
Google Scholar
Pammi M, Lal CV, Wagner BD, Mourani PM, Lohmann P, Luna RA, et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J Pediatr. 2019;204:126-133.e2.
Google Scholar
Lal CV, Kandasamy J, Dolma K, Ramani M, Kumar R, Wilson L, et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2018;315:L810–5.
Google Scholar
Staude B, Gschwendtner S, Frodermann T, Oehmke F, Kohl T, Kublik S, et al. Microbial signatures in amniotic fluid at preterm birth and association with bronchopulmonary dysplasia. Respir Res. 2023;24:248.
Google Scholar
Härtel C, Herting E, Humberg A, Hanke K, Mehler K, Keller T, et al. Association of administration of surfactant using less invasive methods with outcomes in extremely preterm infants less than 27 weeks of gestation. JAMA Netw Open. 2022;5: e2225810.
Google Scholar
Dargaville PA, Kamlin COF, Orsini F, Wang X, De Paoli AG, Kanmaz Kutman HG, et al. Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome. JAMA. 2021;326:1–10.
Google Scholar
Schulman J, Stricof R, Stevens TP, Horgan M, Gase K, Holzman IR, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatrics. 2011;127:436–44.
Google Scholar
Colaizy TT, Poindexter BB, McDonald SA, Bell EF, Carlo WA, Carlson SJ, et al. Neurodevelopmental outcomes of extremely preterm infants fed donor milk or preterm infant formula: a randomized clinical trial. JAMA. 2024;331:582–91.
Google Scholar
Behnke J, Estreich V, Oehmke F, Zimmer K-P, Windhorst A, Ehrhardt H. Compatibility of rapid enteral feeding advances and noninvasive ventilation in preterm infants—an observational study. Pediatr Pulmonol. 2022;57:1117–26.
Google Scholar
Voigt M, Schneider KTM, Jährig K. Analyse des Geburtengutes des Jahrgangs 1992 der Bundesrepublik Deutschland [Analysis of a 1992 birth sample in Germany. 1: New percentile values of the body weight of newborn infants]. Geburtshilfe Frauenheilkd. 1996;56:550–8.
Google Scholar
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.
Google Scholar
Wilkinson DJ, Andersen CC, Smith K, Holberton J. Pharyngeal pressure with high-flow nasal cannulae in premature infants. J Perinatol. 2008;28:42–7.
Google Scholar
Walsh M, Engle W, Laptook A, Kazzi SNJ, Buchter S, Rasmussen M, et al. Oxygen delivery through nasal cannulae to preterm infants: can practice be improved? Pediatrics. 2005;116:857–61.
Google Scholar
Deeg KH, Staudt F. von Rohden L [Classification of intracranial hemorrhage in premature infants]. Ultraschall Med. 1999;20:165–70.
Google Scholar
Leistner R, Piening B, Gastmeier P, Geffers C, Schwab F. Nosocomial infections in very low birthweight infants in Germany: current data from the National Surveillance System NEO-KISS. Klin Padiatr. 2013;225:75–80.
Google Scholar
Franz AR, Engel C, Bassler D, Rüdiger M, Thome UH, Maier RF, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA. 2020;324:560–70.
Google Scholar
Cheong JLY, Olsen JE, Lee KJ, Spittle AJ, Opie GF, Clark M, et al. Temporal trends in neurodevelopmental outcomes to 2 years after extremely preterm birth. JAMA Pediatr. 2021;175:1035–42.
Google Scholar
Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–8.
Google Scholar
Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. 2010;16:4135–44.
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Rosenblad AJJ. Faraway: Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Comput Stat. 2009;24:369–70.
Gallacher D, Mitchell E, Alber D, Wach R, Klein N, Marchesi JR, et al. Dissimilarity of the gut–lung axis and dysbiosis of the lower airways in ventilated preterm infants. Eur Respir J. 2020;55:1901909.
Takahashi Y, Takahashi T, Usuda H, Carter S, Fee EL, Furfaro L, et al. Pharmacological blockade of the interleukin-1 receptor suppressed Escherichia coli lipopolysaccharide-induced neuroinflammation in preterm fetal sheep. Am J Obstet Gynecol MFM. 2023;5: 101124.
Google Scholar
Tremblay S, Miloudi K, Chaychi S, Favret S, Binet F, Polosa A, et al. Systemic inflammation perturbs developmental retinal angiogenesis and neuroretinal function. Invest Ophthalmol Vis Sci. 2013;54:8125–39.
Google Scholar
Sentenac M, Benhammou V, Aden U, Ancel P-Y, Bakker LA, Bakoy H, et al. Maternal education and cognitive development in 15 European very-preterm birth cohorts from the RECAP Preterm platform. Int J Epidemiol. 2022;50:1824–39.
Google Scholar
Seppänen A-V, Draper ES, Petrou S, Barros H, Andronis L, Kim SW, et al. Follow-up after very preterm birth in Europe. Arch Dis Child Fetal Neonatal Ed. 2022;107:113–4.
Google Scholar
Ehrhardt H, Aubert AM, Ådén U, Draper ES, Gudmundsdottir A, Varendi H, et al. Apgar score and neurodevelopmental outcomes at age 5 years in infants born extremely preterm. JAMA Netw Open. 2023;6: e2332413.
Google Scholar
Cnattingius S, Johansson S, Razaz N. Apgar score and risk of neonatal death among preterm infants. N Engl J Med. 2020;383:49–57.
Google Scholar
Shah PS, Norman M, Rusconi F, Kusuda S, Reichman B, Battin M, et al. Five-minute Apgar score and outcomes in neonates of 24–28 weeks’ gestation. Arch Dis Child Fetal Neonatal Ed. 2022;107:437–46.
Google Scholar
Salmon F, Kayem G, Maisonneuve E, Foix-L’Hélias L, Benhammou V, Kaminski M, et al. Clinical chorioamnionitis and neurodevelopment at 5 years of age in children born preterm: the EPIPAGE-2 cohort study. J Pediatr. 2024;267.
Glaser K, Jensen EA, Wright CJ. Prevention of inflammatory disorders in the preterm neonate: an update with a special focus on bronchopulmonary dysplasia. Neonatology. 2024;121:636–45.
Google Scholar
Mukhopadhyay S, Puopolo KM, Hansen NI, Lorch SA, DeMauro SB, Greenberg RG, et al. Impact of early-onset sepsis and antibiotic use on death or survival with neurodevelopmental impairment at 2 years of age among extremely preterm infants. J Pediatr. 2020;221:39-46.e5.
Google Scholar
Behnke J, Dippel CM, Choi Y, Rekers L, Schmidt A, Lauer T, et al. Oxygen toxicity to the immature lung—part ii: the unmet clinical need for causal therapy. Int J Mol Sci. 2021;22:10694.
Google Scholar
Pruski P, Correia GDS, Lewis HV, Capuccini K, Inglese P, Chan D, et al. Direct on-swab metabolic profiling of vaginal microbiome host interactions during pregnancy and preterm birth. Nat Commun. 2021;12:5967.
Google Scholar
Polglase GR, Dalton RGB, Nitsos I, Knox CL, Pillow JJ, Jobe AH, et al. Pulmonary vascular and alveolar development in preterm lambs chronically colonized with Ureaplasma parvum. Am J Physiol Lung Cell Mol Physiol. 2010;299:L232-241.
Google Scholar
Kallapur SG, Kramer BW, Knox CL, Berry CA, Collins JJP, Kemp MW, et al. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J Immunol. 2011;187:2688–95.
Google Scholar
Staude B, Misselwitz B, Louwen F, Rochwalsky U, Oehmke F, Köhler S, et al. Characteristics and rates of preterm births during the COVID-19 pandemic in Germany. JAMA Netw Open. 2024;7: e2432438.
Google Scholar
Hammond JD, Kielt MJ, Conroy S, Lingappan K, Austin ED, Eldredge LC, et al. Exploring the association of male sex with adverse outcomes in severe bronchopulmonary dysplasia: a retrospective, multicenter cohort study. Chest. 2024;165:610–20.
Google Scholar
Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9:8.
Google Scholar
de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572:329–34.
Google Scholar
Yamamoto T, Nomiyama M, Oshima Y, Ono T, Kozuma Y, Nakura Y, et al. Prenatal exposure to intra-amniotic infection with Ureaplasma species increases the prevalence of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med. 2024;37:2320670.
Google Scholar
Kusanovic JP, Jung E, Romero R, Mittal Green P, Nhan-Chang C-L, Vaisbuch E, et al. Characterization of amniotic fluid sludge in preterm and term gestations. J Matern Fetal Neonatal Med. 2022;35:9770–9.
Google Scholar
Hosang L, Canals RC, van der Flier FJ, Hollensteiner J, Daniel R, Flügel A, et al. The lung microbiome regulates brain autoimmunity. Nature. 2022;603:138–44.
Google Scholar
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, et al. Paternal microbiome perturbations impact offspring fitness. Nature. 2024;629:652–9.
Google Scholar
Staude B, Oehmke F, Lauer T, Behnke J, Göpel W, Schloter M, et al. The microbiome and preterm birth: a change in paradigm with profound implications for pathophysiologic concepts and novel therapeutic strategies. Biomed Res Int. 2018;2018:7218187.
Google Scholar
Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28:1394–409.
Google Scholar
Xiang Q, Yan X, Shi X, Huang Y, Li L, Zhong J, et al. Prolonged premature rupture of membranes with increased risk of infection is associated with gut accumulation of Pseudomonas from the environment. Comput Struct Biotechnol J. 2024;23:2851–60.
Google Scholar
Dos Anjos Borges LG, Pastuschek J, Heimann Y, Dawczynski K, PEONS study group, Schleußner E, et al. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med. 2023;21:92.
Google Scholar
Liu Y, Ma J, Li X, Zhao H, Ai Q, Zhang L, et al. No microorganism was detected in amniotic fluid of healthy pregnancies from the second trimester to the delivery. Microbiome. 2025;13:20.
Google Scholar
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.
Google Scholar
Wang Y, Florez ID, Morgan RL, Foroutan F, Chang Y, Crandon HN, et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 2023;177:1158–67.
Google Scholar
Yu CW, Popovic MM, Dhoot AS, Arjmand P, Muni RH, Tehrani NN, et al. Demographic risk factors of retinopathy of prematurity: a systematic review of population-based studies. Neonatology. 2022;119:151–63.
Google Scholar
Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ. Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr. 2010;156:10-15.e1.
Google Scholar
Levesque BM, Kalish LA, Winston AB, Parad RB, Hernandez-Diaz S, Phillips M, et al. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity. Neonatology. 2013;104:56–64.
Google Scholar
Wang L-W, Lin Y-C, Wang S-T, Huang C-C. Identifying risk factors shared by bronchopulmonary dysplasia, severe retinopathy, and cystic periventricular leukomalacia in very preterm infants for targeted intervention. Neonatology. 2018;114:17–24.
Google Scholar
Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, et al. Role of insulinlike growth factor 1 in fetal development and in the early postnatal life of premature infants. Am J Perinatol. 2016;33:1067–71.
Google Scholar