Combining blood meal analysis and parasite detection yields a more comprehensive understanding of insect host feeding patterns | Parasites & Vectors

  • Jaenson TGT. Vector roles of Fennoscandian mosquitoes attracted to mammals, birds and frogs. Med Vet Entomol. 1990;4:221–6.

    CAS 
    PubMed 

    Google Scholar 

  • Radrová J, Šeblová V, Votýpka J. Feeding behavior and spatial distribution of Culex mosquitoes (Diptera: Culicidae) in wetland areas of the Czech Republic. J Med Entomol. 2013;50:1097–104.

    PubMed 

    Google Scholar 

  • McMillan JR, Marcet PL, Hoover CM, Mead D, Kitron U, Vazquez-Prokopec GM. Feeding success and host selection by Culex quinquefasciatus say mosquitoes in experimental trials. Vector Borne Zoonotic Dis. 2019;19:540–8.

    PubMed 

    Google Scholar 

  • Lassen SB, Nielsen SA, Kristensen M. Identity and diversity of blood meal hosts of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) in Denmark. Parasit Vectors. 2012;5:143.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chepkorir E, Venter M, Lutomiah J, Mulwa F, Arum S, Tchouassi DP, et al. The occurrence, diversity and blood feeding patterns of potential vectors of dengue and yellow fever in Kacheliba, West Pokot County Kenya. Acta Trop. 2018;186:50–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sunantaraporn S, Hortiwakul T, Kraivichian K, Siriyasatien P, Brownell N. Molecular identification of host blood meals and detection of blood parasites in Culicoides Latreille (Diptera: Ceratopogonidae) collected from Phatthalung Province, Southern Thailand. Insects. 2022;13:912.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo JH, Berzal B, Calvete C, Miranda MA, Estrada R, Lucientes J. Host feeding patterns of Culicoides species (Diptera: Ceratopogonidae) within the Picos de Europa National Park in northern Spain. Bull Entomol Res. 2012;102:692–7.

    CAS 
    PubMed 

    Google Scholar 

  • Santos CS, Pie MR, da Rocha TC, Navarro-Silva MA. Molecular identification of blood meals in mosquitoes (Diptera: Culicidae) in urban and forested habitats in southern Brazil. PLoS ONE. 2019;14:e0212517.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balenghien T, Fouque F, Sabatier P, Bicout DJ. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of Southern France. J Med Entomol. 2006;43:936–46.

    CAS 
    PubMed 

    Google Scholar 

  • Hubálek Z, Halouzka J. West Nile fever–a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5:643.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Makanga B, Costantini C, Rahola N, Yangari P, Rougeron V, Ayala D, et al. “Show me which parasites you carry and I will tell you what you eat”, or how to infer the trophic behavior of hematophagous arthropods feeding on wildlife. Ecol Evol. 2017;7:7578–84.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernotienė R, Valkiūnas G. PCR detection of malaria parasites and related haemosporidians: the sensitive methodology in determining bird-biting insects. Malar J. 2016;15:283.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV. Nested cytochrome B polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol. 2006;92:418–22.

    PubMed 

    Google Scholar 

  • Valkiūnas G, Kazlauskienė R, Bernotienė R, Bukauskaitė D, Palinauskas V, Iezhova TA. Haemoproteus infections (Haemosporida: Haemoproteidae) kill bird-biting mosquitoes. Parasitol Res. 2014;113:1011–8.

    PubMed 

    Google Scholar 

  • Valkiūnas G, Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA. Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida: Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res. 2013;112:2159–69.

    PubMed 

    Google Scholar 

  • Šeblová V, Sádlová J, Carpenter S, Volf P. Development of Leishmania parasites in Culicoides nubeculosus (Diptera: Ceratopogonidae) and implications for screening vector competence. J Med Entomol. 2012;49:967–70.

    PubMed 

    Google Scholar 

  • Kramář J. Komáři bodaví – Culicinae. Fauna ČSR. ČSAV; 1958.

  • Mathieu B, Cêtre-Sossah C, Garros C, Chavernac D, Balenghien T, Carpenter S, et al. Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit Vectors. 2012;5:137.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS 
    PubMed 

    Google Scholar 

  • Dyce AL. The recognition of nulliparous and parous Culicoides (Diptera: Ceratopogonidae) without dissection. Aust J Entomol. 1969;8:11–5.

    Google Scholar 

  • Maslov DM, Lukes J, Jirků M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunits rRNAs: implications for the evolution of parasitism in the Trypanosomatid protozoa. Mol Biochem Parasitol. 1996;75:197–205.

    CAS 
    PubMed 

    Google Scholar 

  • Votýpka J, Rádrová J, Skalický T, Jirků M, Jirsová D, Mihalca AD, et al. A tsetse and tabanid fly survey of African great ape habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Int J Parasitol. 2015;45:741–8.

    PubMed 

    Google Scholar 

  • Brotánková A, Fialová M, Čepička I, Brzoňová J, Svobodová M. Trypanosomes of the Trypanosoma theileri group: phylogeny and new potential vectors. Microorganisms. 2022;10:294.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Larson DA, Goddard J, Outlaw DC. Mosquito vectors of avian malaria in Mississippi: a first look. J Parasitol. 2017;103:683–91.

    PubMed 

    Google Scholar 

  • Perkins SL, Schall JJ. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol. 2002;88:972–8.

    CAS 
    PubMed 

    Google Scholar 

  • Roca AL, Bar-Gal G, Kahila Eizirik E, Helgen KM, Maria R, Springer MS, et al. Mesozoic origin for West Indian insectivores. Nature. 2004;429:649–51.

    CAS 
    PubMed 

    Google Scholar 

  • Országh I, Minář J, Halgoš J. Culicidae Meigen, 1818. In: Jedlička L., Kúdela M. & Stloukalová V. (eds): Checklist of Diptera of the Czech Republic and Slovakia. 2009. http://www.edvis.sk/diptera2009/families/culicidae.htm

  • Šebesta O, Halouzka J, Hubláek Z, Juřicová Z, Rudolf I, Šikutová S, et al. Mosquito (Diptera: Culicidae) fauna in an area endemic for West Nile virus. J Vector Ecol. 2010;35:156–62.

    PubMed 

    Google Scholar 

  • Votýpka J, Seblová V, Rádrová J. Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe. J Vector Ecol J Soc Vector Ecol. 2008;33:269–77.

    Google Scholar 

  • Rudolf I, Bakonyi T, Šebesta O, Mendel J, Peško J, Betášová L, et al. West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Eurosurveillance. 2014;19:2–5.

    CAS 
    PubMed 

    Google Scholar 

  • Rudolf I, Bakonyi T, Šebesta O, Mendel J, Peško J, Betášová L, et al. Co-circulation of Usutu virus and West Nile virus in a reed bed ecosystem. Parasit Vectors. 2015;8:520.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tóthová A, Knoz J, Ceratopogonidae Newman, 1834. In: Jedlička L, Kúdela M, Stloukalová V, editors. Checklist of Diptera of the Czech Republic and Slovakia. Electronic version 2. 2009. http://www.edvis.sk/diptera2009/start.htm Accessed 06 Mar 2025

  • Rádrová J, Mračková M, Galková Z, Lamka J, Račka K, Barták P, et al. Seasonal dynamics, parity rate, and composition of Culicoides (Diptera: Ceratopogonidae) occurring in the vicinity of wild and domestic ruminants in the Czech Republic. J Med Entomol. 2016;53:416–24.

    PubMed 

    Google Scholar 

  • McDermott EG, Mayo CE, Gerry AC, Mullens BA. Trap placement and attractant choice affect capture and create sex and parity biases in collections of the biting midge Culicoides sonorensis. Med Vet Entomol. 2016;30:293–300.

    CAS 
    PubMed 

    Google Scholar 

  • Möhlmann TWR, Bekendam AM, Van Kemenade I, Wennergren U, Favia G, Takken W, et al. Latitudinal diversity of biting midge species within the Obsoletus group across three habitats in Europe. Med Vet Entomol. 2019;33:420–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer RC, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J. 2016;15:589.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiron GV, Stancu IG, Dinu S, Prioteasa FL, Falcuta E, Ceianu CS, et al. Characterization and host-feeding patterns of Culex pipiens s.l. taxa in a West Nile virus-endemic area in Southeastern Romania. Vector-Borne Zoonotic Dis. 2021;21:713–9.

    PubMed 

    Google Scholar 

  • Mora-Rubio C, Ferraguti M, Magallanes S, Bravo-Barriga D, Hernandez-Caballero I, Marzal A, et al. Unravelling the mosquito-haemosporidian parasite-bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors. 2023;16:1–15.

    Google Scholar 

  • Köchling K, Schaub GA, Schäfer M, Werner D, Kampen H. Host preference of mosquitoes (Diptera: Culicidae) collected in Germany. J Vector Ecol. 2024;49:114–25.

    Google Scholar 

  • Blom R, Krol L, Langezaal M, Schrama M, Trimbos KB, Wassenaar D, et al. Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats. Parasit Vectors. 2024;17:1–12.

    Google Scholar 

  • Heym EC, Kampen H, Walther D. Mosquito bloodmeal preferences in two zoological gardens in Germany. Med Vet Entomol. 2019;33:203–12.

    CAS 
    PubMed 

    Google Scholar 

  • Kurucz K, Kepner A, Hederics D. Blood-meal analysis and avian malaria screening of mosquitoes collected from human-inhabited areas in Hungary and Serbia. J Eur Mosq Control Assoc. 2018;36:1–10.

    Google Scholar 

  • Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, et al. Host-feeding patterns of mosquito species in Germany. Parasit Vectors. 2016;9:318.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30:39–52.

    PubMed 

    Google Scholar 

  • Camp JV, Kniha E, Obwaller AG, Walochnik J, Nowotny N. The transmission ecology of Tahyna orthobunyavirus in Austria as revealed by longitudinal mosquito sampling and blood meal analysis in floodplain habitats. Parasit Vectors. 2021;14:561.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasci RS, Edman JD. Blood-feeding patterns of Culiseta melanura (Diptera: Culicidae) and associated sylvan mosquitoes in southeastern Massachusetts Eastern Equine Encephalitis enzootic foci. J Med Entomol. 1981;18:493–500.

    Google Scholar 

  • Wekesa JW, Yuval B, Washino RK, Vasquez AM. Blood feeding patterns of Anopheles freeborni and Culex tarsalis (Diptera: Culicidae): effects of habitat and host abundance. Bull Entomol Res. 1997;87:633–41.

    Google Scholar 

  • Molaei G, Andreadis TG. Identification of avian- and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, U.S.A. J Med Entomol. 2006;43:1088–93.

    PubMed 

    Google Scholar 

  • Alonso DP, Amorim JA, de Oliveira TMP, de Sá ILR, Possebon FS, de Carvalho DP, et al. Host feeding patterns of Mansonia (Diptera, Culicidae) in rural settlements near Porto Velho, state of Rondonia Brazil. Biomolecules. 2023;13:553.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cancrini G, Magi M, Gabrielli S, Arispici M, Tolari F, Dell’Omodarme M, et al. Natural vectors of dirofilariasis in rural and urban areas of the Tuscan region Central Italy. J Med Entomol. 2006;43:574–9.

    CAS 
    PubMed 

    Google Scholar 

  • Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J Med Entomol. 2008;45:1143–51.

    CAS 
    PubMed 

    Google Scholar 

  • Service MW. Feeding behaviour and host preferences of British mosquitoes. Bull Entomol Res. 1971;60:653–61.

    CAS 
    PubMed 

    Google Scholar 

  • Kazak M, Valavičiūtė-Pocienė K, Kondrotaitė S, Duc M, Bukauskaitė D, Hernández-Lara C, et al. Culicoides biting midges feeding behaviour as a key for understanding avian Haemoproteus transmission in Lithuania. Med Vet Entomol. 2024;38:530–41.

    CAS 
    PubMed 

    Google Scholar 

  • de la Puente JM, Figuerola J, Soriguer R. Fur or feather? Feeding preferences of species of Culicoides biting midges in Europe. Trends Parasitol. 2015;31:16–22.

    Google Scholar 

  • Schoener E, Uebleis SS, Butter J, Nawratil M, Cuk C, Flechl E, et al. Avian Plasmodium in eastern Austrian mosquitoes. Malar J. 2017;16:1–2.

    Google Scholar 

  • Ejiri H, Sato Y, Kim KS, Hara T, Tsuda Y, Imura T, et al. Entomological Study on transmission of avian malaria parasites in a zoological garden in Japan: bloodmeal identification and detection of avian malaria parasite DNA from blood-fed mosquitoes. J Med Entomol. 2011;48:600–7.

    PubMed 

    Google Scholar 

  • Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Yan J, Soriguer RC, Figuerola J. Do mosquitoes transmit the avian malaria-like parasite Haemoproteus? An experimental test of vector competence using mosquito saliva. Parasit Vectors. 2016;9:609.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valavičiūtė-Pocienė K, Kalinauskaitė G, Chagas CRF, Bernotienė R. Avian haemosporidian parasites from wild-caught mosquitoes with new evidence on vectors of Plasmodium matutinum. Acta Trop. 2024;256:107260.

    PubMed 

    Google Scholar 

  • Köchling K, Schaub GA, Werner D, Kampen H. Avian Plasmodium spp. and Haemoproteus spp. parasites in mosquitoes in Germany. Parasit Vectors. 2023;16:369.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoener E, Uebleis SS, Cuk C, Nawratil M, Obwaller AG, Zechmeister T, et al. Trypanosomatid parasites in Austrian mosquitoes. PLoS ONE. 2018;13:e0196052.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoener ER, Harl J, Himmel T, Fragner K, Weissenböck H, Fuehrer HP. Protozoan parasites in Culex pipiens mosquitoes in Vienna. Parasitol Res. 2019;118:1261–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Svobodová M, Volf P, Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med Vet Entomol. 2015;29:444–7.

    PubMed 

    Google Scholar 

  • Fialová M, Santolíková A, Brotánková A, Brzoňová J, Svobodová M. Complete life cycle of Trypanosoma thomasbancrofti, an avian trypanosome transmitted by culicine mosquitoes. Microorganisms. 2021;9:2101.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zélé F, Vézilier J, L’Ambert G, Nicot A, Gandon S, Rivero A, et al. Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance. Parasit Vectors. 2014;7:437.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Synek P, Munclinger P, Albrecht T, Votýpka J. Avian haemosporidians in haematophagous insects in the Czech Republic. Parasitol Res. 2013;112:839–45.

    PubMed 

    Google Scholar 

  • Platonova E, Davydov A, Erokhina M, Mukhin A. Avian malaria parasites (Haemosporida: Plasmodiidae) in mosquitoes (Diptera: Culicidae) of the Curonian Spit (South-East coast of the Baltic Sea). Biol Commun. 2024;69:185–91.

    Google Scholar 

  • Ferraguti M, Puente JMDL, Oz JM, Roiz D, Ruiz S, Soriguer RN, et al. Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS ONE. 2013;8:e66237.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulich Fialová M, Kapustová A, Čepička I, Svobodová M. Trypanosoma tertium n. sp.: prevalences in natural hosts and development in the mosquito vector. Parasitology. 2025;28:1–10.

    Google Scholar 

  • Wehmeyer ML, Jaworski L, Jöst H, Șuleșco T, Rauhöft L, Afonso SMM, et al. Host attraction and host feeding patterns indicate generalist feeding of Culex pipiens s.s. and Cx. torrentium. Parasit Vectors. 2024;17:369.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haba Y, McBride L. Origin and status of Culex pipiens mosquito ecotypes. Curr Biol. 2022;32:R237–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg. 2007;77:667–71.

    PubMed 

    Google Scholar 

  • Gomes B, Sousa CA, Vicente JL, Pinho L, Calderón I, Arez E, et al. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasit Vectors. 2013;6:1–10.

    Google Scholar 

  • Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, et al. Nonspecific patterns of vector, host, and avian malaria parasite associations in a central African rainforest. Mol Ecol. 2011;20:1049–61.

    CAS 
    PubMed 

    Google Scholar 

  • Boothe E, Medeiros MCI, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL, et al. Identification of avian and hemoparasite DNA in blood-engorged abdomens of Culex pipiens (Diptera; Culicidae) from a West Nile virus epidemic region in suburban Chicago. Illinois J Med Entomol. 2015;52:461–8.

    CAS 
    PubMed 

    Google Scholar 

  • Guimarães LDO, Simões RF, Chagas CRF, Menezes RMTD, Silva FS, Monteiro EF, et al. Assessing diversity, Plasmodium infection, and blood meal sources in mosquitoes (Diptera: Culicidae) from a Brazilian zoological park with avian malaria transmission. Insects. 2021;12:215.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. Trypanosoma culicavium sp. Nov., an avian trypanosome transmitted by Culex mosquitoes. Int J Syst Evol Microbiol. 2012;62:745–54.

  • Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A literature review on the role of the invasive Aedes albopictus in the transmission of avian malaria parasites. Animals. 2024;14:482.

    Google Scholar 

  • Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, et al. Does the niche breadth or trade-off hypothesis explain the abundance–occupancy relationship in avian Haemosporidia? Mol Ecol. 2014;23:3322–9.

    PubMed 

    Google Scholar 

  • Ferreira FC, Rodrigues RA, Sato Y, Borges MAZ, Braga ÉM. Searching for putative avian malaria vectors in a seasonally dry tropical forest in Brazil. Parasit Vectors. 2016;9:587.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith MM, Van Hemert C, Handel CM. Evidence of Culiseta mosquitoes as vectors for Plasmodium parasites in Alaska. J Vector Ecol. 2019;44:68–75.

    PubMed 

    Google Scholar 

  • Danabalan R, Monaghan MT, Ponsonby DJ, Linton Y-M. Occurrence and host preferences of Anopheles maculipennis group mosquitoes in England and Wales. Med Vet Entomol. 2014;28:169–78.

    CAS 
    PubMed 

    Google Scholar 

  • Žiegytė R, Platonova E, Kinderis E, Mukhin A, Palinauskas V, Bernotienė R. Culicoides biting midges involved in transmission of haemoproteids. Parasit Vectors. 2021;14:1–9.

    Google Scholar 

  • Chagas CRF, Duc M, Kazak M, Valavičiūtė-Pocienė K, Bukauskaitė D, Hernández-Lara C, et al. High abundance of Haemoproteus parasites in Culicoides (Diptera, Ceratopogonidae), with a confirmation of Culicoides reconditus as a new vector of these avian blood parasites. Insects. 2024;15:157.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chagas CRF, Hernández-Lara C, Duc M, Valavičiūtė-Pocienė K, Bernotienė R. What can haemosporidian lineages found in Culicoides biting midges tell us about their feeding preferences? Diversity. 2022;14:957.

    CAS 

    Google Scholar 

  • Iurescia M, Romiti F, Cocumelli C, Diaconu EL, Stravino F, Onorati R, et al. Plasmodium matutinum transmitted by Culex pipiens as a cause of avian malaria in captive African penguins (Spheniscus demersus) in Italy. Front Vet Sci. 2021;8:621974.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrigós M, Veiga J, Garrido M, Marín C, Recuero J, Rosales MJ, et al. Avian Plasmodium in invasive and native mosquitoes from southern Spain. Parasit Vectors. 2024;17:40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Santiago-Alarcon D, Havelka P, Schaefer HM, Segelbacher G. Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS ONE. 2012;7:e31098.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zídková L, Čepicka I, Szabová J, Svobodová M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12:102–12.

    PubMed 

    Google Scholar 

  • Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10:224.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, et al. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis. 2020;14:e0008059.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lalubin F, Delédevant A, Glaizot O, Christe P. Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasit Vectors. 2013;6:307.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valavičiūtė-Pocienė K, Kazak M, Iezhova T, Kalinauskaitė G, Bernotienė R. Blood parasites (Haemosporida, Trypanosomatida) in Culex pipiens: a study and review of hibernating and active mosquitoes. Microbiol Res. 2024;15:2184–98.

    Google Scholar 

  • Okanga S, Cumming GS, Hockey PA. Avian malaria prevalence and mosquito abundance in the Western Cape, South Africa. Malar J. 2013;12:370.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández De Marco M, Brugman VA, Hernández-Triana LM, Thorne L, Phipps LP, Nikolova NI, et al. Detection of Theileria orientalis in mosquito blood meals in the United Kingdom. Vet Parasitol. 2016;229:31–6.

    PubMed 

    Google Scholar 

  • Hernández-Triana LM, Brugman VA, Prosser SWJ, Weland C, Nikolova N, Thorne L, et al. Molecular approaches for blood meal analysis and species identification of mosquitoes (Insecta: Diptera: Culicidae) in rural locations in southern England United Kingdom. Zootaxa. 2017;4250:067–76.

    Google Scholar 

  • Brugman VA, Hernández-Triana LM, England ME, Medlock JM, Mertens PPC, Logan JG, et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasit Vectors. 2017;10:1–12.

    Google Scholar 

  • Martínez-de La Puente J, Ruiz S, Soriguer R, Figuerola J. Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malar J. 2013;12:109.

    PubMed 
    PubMed Central 

    Google Scholar 

  • González MA, Goiri F, Prosser SWJ, Cevidanes A, Hernández-Triana LM, Barandika JF, et al. Culicoides species community composition and feeding preferences in two aquatic ecosystems in northern Spain. Parasit Vectors. 2022;15:199.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Riddin MA, Venter GJ, Labuschagne K, Villet MH. Bloodmeal analysis in Culicoides midges collected near horses, donkeys and zebras in the Eastern Cape South Africa. Med Vet Entomol. 2019;33:467–75.

    CAS 
    PubMed 

    Google Scholar 

  • Tomazatos A, Jöst H, Schulze J, Spînu M, Schmidt-Chanasit J, Cadar D, et al. Blood-meal analysis of Culicoides (Diptera: Ceratopogonidae) reveals a broad host range and new species records for Romania. Parasit Vectors. 2020;13:1–12.

    Google Scholar 

  • Dimitrov D, Zehtindjiev P, Bensch S, Ilieva M, Iezhova T, Valkiūnas G. Two new species of Haemoproteus Kruse, 1890 (Haemosporida, Haemoproteidae) from European birds, with emphasis on DNA barcoding for detection of haemosporidians in wildlife. Syst Parasitol. 2014;87:135–51.

    PubMed 

    Google Scholar 

  • Martínez J, Puente JMDL, Herrero J, Cerro SD, Lobato E, Aguilar JRD, et al. A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology. 2009;136:713–22.

    PubMed 

    Google Scholar 

  • Yeo H, Harjoko DN, Rheindt FE. Double trouble: untangling mixed sequence signals in bird samples with avian haemosporidian co-infections. Parasitology. 2022;149:799–810.

    Google Scholar 

  • Kipp EJ, Lindsey LL, Milstein MS, Blanco CM, Baker JP, Faulk C, et al. Nanopore adaptive sampling for targeted mitochondrial genome sequencing and bloodmeal identification in hematophagous insects. Parasit Vectors. 2023;16:1–15.

    Google Scholar 

  • Geržová L. Leucocytozoon in Parus spp. (MSc Thesis). Charles University in Prague; 2025.

  • Continue Reading