Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, et al. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol. 2023;14:1199173.
Google Scholar
Shen X, Zhou S, Yang Y, Hong T, Xiang Z, Zhao J, et al. TAM-targeted re-education for enhanced cancer immunotherapy: mechanism and recent progress. Front Oncol. 2022;12:1034842.
Google Scholar
Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 2022;13:868695.
Google Scholar
Bai R, Cui J. Development of immunotherapy strategies targeting tumor microenvironment is fiercely ongoing. Front Immunol. 2022;13:890166.
Google Scholar
Bol KF, Schreibelt G, Gerritsen WR, De Vries IJ, Figdor CG. Dendritic cell–based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906.
Google Scholar
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, et al. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol. 2024;128:111548.
Google Scholar
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.
Google Scholar
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3.
Google Scholar
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, et al. Cancer immunotherapy: Challenges and limitations. Pathology-Research and Practice. 2022;229:153723.
Google Scholar
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):5408.
Google Scholar
Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.
Google Scholar
Wakim LM, Bevan MJ. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature. 2011;471(7340):629–32.
Google Scholar
Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, Abdi R, Uehara M, Kim JI, Markmann JF, Tocco G. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1(1):aaf8759.
Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, Rescigno M. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med. 2010;2(44):44ra57.
Mendoza-Naranjo A, Saéz PJ, Johansson CC, Ramírez M, Mandakovic D, Pereda C, et al. Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells. J Immunol. 2007;178(11):6949–57.
Google Scholar
Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.
Google Scholar
Wang GZ, Tang XD, Lü MH, Gao JH, Liang GP, Li N, et al. Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Cancer Prev Res. 2011;4(8):1285–95.
Google Scholar
Sika-Paotonu D. Increasing the potency of dendritic cell-based vaccines for the treatment of cancer (Doctoral dissertation, Te Herenga Waka-Victoria University of Wellington). 2014.
Sánchez-León ML, Jiménez-Cortegana C, Cabrera G, Vermeulen EM, de la Cruz-Merino L, Sánchez-Margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: impact on myeloid-derived suppressor cells. Front Immunol. 2022;13:1050484.
Google Scholar
MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood J Am Soc Hematol. 2002;100(13):4512–20.
Google Scholar
Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106(3):259–62.
Google Scholar
Böttcher JP, Sousa CR. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018;4(11):784–92.
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31(1):563–604.
Google Scholar
Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol. 2015;41:9–22.
Google Scholar
Lee KW, Yam JW, Mao X. Dendritic cell vaccines: a shift from conventional approach to new generations. Cells. 2023;12(17):2147.
Google Scholar
Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW. Integrated data from 2 randomized, double‐blind, placebo‐controlled, phase 3 trials of active cellular immunotherapy with sipuleucel‐T in advanced prostate cancer. Cancer Interdisc Int J Am Cancer Soc. 2009;115(16):3670–9.
Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.
Google Scholar
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.
Google Scholar
Ratzinger G, Baggers J, de Cos MA, Yuan J, Dao T, Reagan JL, et al. Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J Immunol. 2004;173(4):2780–91.
Google Scholar
Chung DJ, Carvajal RD, Postow MA, Sharma S, Pronschinske KB, Shyer JA, et al. Langerhans-type dendritic cells electroporated with TRP-2 mRNA stimulate cellular immunity against melanoma: results of a phase I vaccine trial. Oncoimmunology. 2018;7(1):e1372081.
Google Scholar
Laoui D, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X, Elkrim Y, et al. The tumor microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumor immunity. Nat Commun. 2016;7(1):13720.
Google Scholar
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized dendritic cell vaccines—recent breakthroughs and encouraging clinical results. Front Immunol. 2019;11(10):766.
Google Scholar
Tel J, Benitez-Ribas D, Hoosemans S, Cambi A, Adema GJ, Figdor CG, et al. DEC-205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. Eur J Immunol. 2011;41(4):1014–23.
Google Scholar
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.
Google Scholar
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology. 2020;9(1):1779991.
Google Scholar
Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer. 2016;16(1):56–66.
Google Scholar
Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater. 2009;8(2):151–8.
Google Scholar
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.
Google Scholar
Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci. 2012;109(48):19590–5.
Google Scholar
Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20(8):1083–97.
Google Scholar
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1):e000337.
Google Scholar
Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 antitumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 2022;13(12):1062.
Google Scholar
Wang X, Ji J, Zhang H, Fan Z, Zhang L, Shi L, et al. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget. 2015;6(42):44688.
Google Scholar
Gu YZ, Zhao X, Song XR. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin. 2020;41(7):959–69.
Google Scholar
Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, De Wilt JH, et al. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res. 2012;18(19):5460–70.
Google Scholar
Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol. 2008;180(1):309–18.
Google Scholar
Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, et al. Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood. 2005;105(8):3206–13.
Google Scholar
Tcherepanova IY, Adams MD, Feng X, Hinohara A, Horvatinovich J, Calderhead D, et al. Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Mol Biol. 2008;9(1):90.
Google Scholar
Carneiro BA, Zamarin D, Marron T, Mehmi I, Patel SP, Subbiah V, El-Khoueiry A, Grand D, Garcia-Reyes K, Goel S, Martin P. Abstract CT183: first-in-human study of MEDI1191 (mRNA encoding IL-12) plus durvalumab in patients (pts) with advanced solid tumors. Cancer Res. 2022 Jun 15;82(12_Supplement):CT183-.
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, et al. Dendritic cell–derived exosomes for cancer therapy. J Clin Investig. 2016;126(4):1224–32.
Google Scholar
Fu C, Peng P, Loschko J, Feng L, Pham P, Cui W, et al. Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc Natl Acad Sci. 2020;117(38):23730–41.
Google Scholar
Dai Phung C, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong JH, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;1(115):371–82.
Google Scholar
Mohammadzadeh Y, De Palma M. Boosting dendritic cell nanovaccines. Nat Nanotechnol. 2022;17(5):442–4.
Google Scholar
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun. 2024;44(9):1047–70.
Google Scholar
Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2021;11:620374.
Google Scholar
Zheng J, Li X, He A, Zhang Y, Yang Y, Dang M, et al. In situ antigen-capture strategies for enhancing dendritic cell-mediated antitumor immunity. J Control Release. 2025;29:113984.
Google Scholar
Ng YH, Chalasani G. Role of secondary lymphoid tissues in primary and memory T-cell responses to a transplanted organ. Transplant Rev. 2010;24(1):32–41.
Google Scholar
Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX, et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol. 2000;164(9):4558–63.
Google Scholar
von Renesse J, Lin MC, Ho PC. Tumor-draining lymph nodes–friend or foe during immune checkpoint therapy? Trends Cancer. 2025.
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Sousa CR. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022–37.
Alfei F, Ho PC, Lo WL. DCision-making in tumors governs T cell antitumor immunity. Oncogene. 2021;40(34):5253–61.
Google Scholar
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of dendritic cells in tumor microenvironment: for immunotherapy. Front Immunol. 2021;12:613492.
Google Scholar
McGettrick AF, O’Neill LA. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288(32):22893–8.
Google Scholar
Møller SH, Wang L, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immunol. 2022;19(3):370–83.
Google Scholar
Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic control of dendritic cell functions: digesting information. Front Immunol. 2019;10:775.
Google Scholar
Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S, et al. Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol. 2012;227(2):587–95.
Google Scholar
Carraro F, Pucci A, Pellegrini M, Giuseppe Pelicci P, Baldari CT, Naldini A. p66Shc is involved in promoting HIF-1α accumulation and cell death in hypoxic T cells. J Cell Physiol. 2007;211(2):439–47.
Google Scholar
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci. 2021;286:120057.
Google Scholar
Márquez S, Fernández JJ, Terán-Cabanillas E, Herrero C, Alonso S, Azogil A, et al. Endoplasmic reticulum stress sensor IRE1α enhances IL-23 expression by human dendritic cells. Front Immunol. 2017;8:639.
Google Scholar
Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, et al. Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101(11):4457–63.
Google Scholar
Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, et al. Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI (3) K-mTOR-p70S6K pathway. Nat Immunol. 2008;9(10):1157–64.
Google Scholar
Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol. 2007;178(11):7018–31.
Google Scholar
Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6.
Google Scholar
Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111–5.
Google Scholar
Carstensen LS, Lie-Andersen O, Obers A, Crowther MD, Svane IM, Hansen M. Long-term exposure to inflammation induces differential cytokine patterns and apoptosis in dendritic cells. Front Immunol. 2019;10:2702.
Google Scholar
Hansen M, Andersen MH. The role of dendritic cells in cancer. InSeminars Immunopathol. 2017;39:307–16.
Google Scholar
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16(1):103.
Google Scholar
Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic cell metabolism and function in tumors. Trends Immunol. 2019;40(8):699–718.
Google Scholar
Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8(1):2122.
Google Scholar
Caronni N, Simoncello F, Stafetta F, Guarnaccia C, Ruiz-Moreno JS, Opitz B, et al. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer. Can Res. 2018;78(7):1685–99.
Google Scholar
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls antitumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.
Google Scholar
Song M, Cubillos-Ruiz JR. Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol. 2019;40(2):128–41.
Google Scholar
Zhu C, Dixon KO, Newcomer K, Gu G, Xiao S, Zaghouani S, Schramm MA, Wang C, Zhang H, Goto K, Christian E. Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. Sci Adv. 2021;7(18):eabd2710.
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168(4):692–706.
Google Scholar
Werfel TA, Cook RS. Efferocytosis in the tumor microenvironment. InSeminars in immunopathology. 2018;40(6).
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107(5):2013–21.
Google Scholar
Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, et al. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2, 3-dioxygenase expression. Cancer Immunol Immunother. 2007;56:1017–24.
Google Scholar
Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12.
Google Scholar
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207.
Google Scholar
McDonnell AM, Robinson BW, Currie AJ. Tumor antigen cross-presentation and the dendritic cell: where it all begins? J Immunol Res. 2010;2010(1):539519.
Google Scholar
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, et al. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol. 2023;27(14):1213629.
Google Scholar
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis. 2024;23(1):35.
Google Scholar
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer. 2025;24(1):5.
Google Scholar
Wang H, Zhou F, Qin W, Yang Y, Li X, Liu R. Metabolic regulation of myeloid-derived suppressor cells in tumor immune microenvironment: targets and therapeutic strategies. Theranostics. 2025;15(6):2159.
Google Scholar
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938.
Wang F, Lou J, Gao X, Zhang L, Sun F, Wang Z, et al. Spleen-targeted nanosystems for immunomodulation. Nano Today. 2023;1(52):101943.
Google Scholar
Cao W, Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192(6):2920–31.
Google Scholar
Traversari C, Sozzani S, Steffensen KR, Russo V. LXR-dependent and-independent effects of oxysterols on immunity and tumor growth. Eur J Immunol. 2014;44(7):1896–903.
Google Scholar
Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med. 2010;16(1):98–105.
Google Scholar
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol. 2023;8(83):eadd3955.
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, et al. The cGAS-STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol. 2025;18(1):40.
Google Scholar
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.
Google Scholar
Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462(7269):99–103.
Google Scholar
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13(9):832–42.
Google Scholar
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 2017;47(2):363–73.
Google Scholar
Huang CY, Ye ZH, Huang MY, Lu JJ. Regulation of CD47 expression in cancer cells. Transl Oncol. 2020;13(12):100862.
Google Scholar
Sockolosky JT, Dougan M, Ingram JR, Ho CC, Kauke MJ, Almo SC, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci. 2016;113(19):E2646–54.
Google Scholar
Ng II, Zhang Z, Xiao K, Ye M, Tian T, Zhu Y, He Y, Chu L, Tang H. Targeting WEE1 in tumor-associated dendritic cells potentiates antitumor immunity via the cGAS/STING pathway. Cell Reports. 2025;44(6).
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788–92.
Google Scholar
Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, Sivick KE. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra52.
Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J Clin Med. 2020;9(10):3323.
Google Scholar
Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31(5):711–23.
Google Scholar
Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signaling prevents anti-tumor immunity. Nature. 2015;523(7559):231–5.
Google Scholar
Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat Med. 2018;24(8):1178–91.
Google Scholar
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother. 2016;65:821–33.
Google Scholar
Zelenay S, Van Der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–70.
Google Scholar
Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep. 2015;13(12):2851–64.
Google Scholar
Nirschl CJ, Suárez-Fariñas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, et al. IFNγ-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell. 2017;170(1):127–41.
Google Scholar
Fu C, Liang X, Cui W, Ober-Blöbaum JL, Vazzana J, Shrikant PA, et al. β-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci. 2015;112(9):2823–8.
Google Scholar
Ramalingam R. Importance of TGF-beta signaling in dendritic cells to maintain immune tolerance. 2012; Doctoral dissertation, The University of Arizona.
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumor environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–67.
Google Scholar
Hsu JM, Li CW, Lai YJ, Hung MC. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Can Res. 2018;78(22):6349–53.
Google Scholar
Zhang L, Nishi H. Transcriptome analysis of Homo sapiens and Mus musculus reveals mechanisms of CD8+ T cell exhaustion caused by different factors. PLoS ONE. 2022;17(9):e0274494.
Google Scholar
Kagoya Y. Molecular profiles of exhausted T cells and their impact on response to immune checkpoint blockade. Gan to kagaku ryoho. Cancer Chemother. 2022;49(6):609–14.
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and molecular mechanisms of CD8+ T cell differentiation, dysfunction and exhaustion. Int J Mol Sci. 2020;21(19):7357.
Google Scholar
Mende I, Engleman EG. Breaking self-tolerance to tumor-associated antigens by in vivo manipulation of dendritic cells. InImmunological Tolerance Methods Protocols. 2007;457–468. Totowa, NJ: Humana Press.
Mende I, Engleman EG. Breaking tolerance to tumors with dendritic cell-based immunotherapy. Ann N Y Acad Sci. 2005;1058(1):96–104.
Google Scholar
Gehrcken L, Deben C, Smits E, Van Audenaerde JR. STING agonists and how to reach their full potential in cancer immunotherapy. Adv Sci. 2025;12(17):2500296.
Google Scholar
Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, et al. Using gene editing approaches to fine-tune the immune system. Front Immunol. 2020;11:570672.
Google Scholar
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-edited PD-1/PD-L1 on tumor immunity and immunotherapy. Front Immunol. 2022;13:848327.
Google Scholar
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: a new era of cancer management. Int J Nanomed. 2023; 5531–59.
Becker AM. Exploring the modulation and development of type 3 dendritic cells in cancer and autoimmunity. Sl:Sn; 2023.
Turnis ME, Rooney CM. Enhancement of dendritic cells as vaccines for cancer. Immunotherapy. 2010;2(6):847–62.
Google Scholar
Cornel AM, Van Til NP, Boelens JJ, Nierkens S. Strategies to genetically modulate dendritic cells to potentiate antitumor responses in hematologic malignancies. Front Immunol. 2018;9:982.
Google Scholar
Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis. Blood J Am Soc Hematol. 1997;90(4):1458–70.
Kumar J, Kale V, Limaye L. Umbilical cord blood-derived CD11c+ dendritic cells could serve as an alternative allogeneic source of dendritic cells for cancer immunotherapy. Stem Cell Res Ther. 2015;6:1–5.
Google Scholar
Kikuchi T. Genetically modified dendritic cells for therapeutic immunity. Tohoku J Exp Med. 2006;208(1):1–8.
Google Scholar
Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, et al. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep. 2019;9(1):3631.
Google Scholar
Jost M, Jacobson AN, Hussmann JA, Cirolia G, Fischbach MA, Weissman JS. CRISPR-based functional genomics in human dendritic cells. Elife. 2021;10:e65856.
Google Scholar
Hutten T, Thordardottir S, Hobo W, Hübel J, van der Waart AB, Cany J, et al. Ex vivo generation of interstitial and langerhans cell-like dendritic cell subset–based vaccines for hematological malignancies. J Immunother. 2014;37(5):267–77.
Google Scholar
Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 2016;17(5):1453–61.
Google Scholar
Mao K, Tan H, Cong X, Liu J, Xin Y, Wang J, et al. Optimized lipid nanoparticles enable effective CRISPR/Cas9-mediated gene editing in dendritic cells for enhanced immunotherapy. Acta Pharmaceutica Sinica B. 2025;15(1):642–56.
Google Scholar
Hung KL, Meitlis I, Hale M, Chen CY, Singh S, Jackson SW, et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol Ther. 2018;26(2):456–67.
Google Scholar
Okada N, Mori N, Koretomo R, Okada Y, Nakayama T, Yoshie O, et al. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther. 2005;12(2):129–39.
Google Scholar
Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29(3):325–42.
Google Scholar
Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 2007;27(4):610–24.
Google Scholar
Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther. 2008;16(6):1170–80.
Google Scholar
Grünebach F, Kayser K, Weck MM, Müller MR, Appel S, Brossart P. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4–1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther. 2005;12(9):749–56.
Google Scholar
De Keersmaecker B, Heirman C, Corthals J, Empsen C, van Grunsven LA, Allard SD, et al. The combination of 4–1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol. 2011;89(6):989–99.
Google Scholar
Boczkowski D, Lee J, Pruitt S, Nair S. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther. 2009;16(12):900–11.
Google Scholar
Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumor immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.
Google Scholar
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 2022;19(1):3–13.
Google Scholar
Theisen DJ, Davidson JT IV, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362(6415):694–9.
Google Scholar
Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 2015;162(3):675–86.
Google Scholar
Albrecht V, Hofer TP, Foxwell B, Frankenberger M, Ziegler-Heitbrock L. Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1. BMC Immunol. 2008;9:1–4.
Google Scholar
Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL, et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials. 2019;217:119302.
Google Scholar
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.
Google Scholar
Tsai SQ, Nguyen N, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets. Nature. 2016;529(7587):490–5.
Google Scholar
Xu H, Look T, Prithiviraj S, Lennartz D, Cáceres MD, Götz K, et al. CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells. Eur J Immunol. 2022;52(11):1859–62.
Google Scholar
He M, Roussak K, Ma F, Borcherding N, Garin V, White M, Schutt C, Jensen TI, Zhao Y, Iberg CA, Shah K. CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses. Science. 2023;379(6633):eabg2752.
Groom JR. Regulators of T-cell fate: integration of cell migration, differentiation and function. Immunol Rev. 2019;289(1):101–14.
Google Scholar
Kwon YW, Ahn HS, Lee JW, Yang HM, Cho HJ, Kim SJ, et al. HLA DR genome editing with TALENs in human iPSCs produced immune-tolerant dendritic cells. Stem Cells Int. 2021;2021(1):8873383.
Google Scholar
Menger L, Sledzinska A, Bergerhoff K, Vargas FA, Smith J, Poirot L, et al. TALEN-mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Can Res. 2016;76(8):2087–93.
Google Scholar
Bhardwaj A, Nain V. TALENs—an indispensable tool in the era of CRISPR: a mini review. J Genetic Eng Biotechnol. 2021;19(1):125.
Google Scholar
Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther. 2015;23(10):1592–9.
Google Scholar
Hivroz C, Chemin K, Tourret M, Bohineust A. Crosstalk between T lymphocytes and dendritic cells. Crit Reviews™ Immunol. 2012;32(2).
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-editing technologies paired with viral vectors for translational research into neurodegenerative diseases. Front Mol Neurosci. 2020;12(13):148.
Google Scholar
Mahfouz MM, Piatek A, Stewart CN Jr. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J. 2014;12(8):1006–14.
Google Scholar
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: rewiring gene editing. Biochemistry. 2022;62(24):3521–32.
Google Scholar
Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun. 2019;10(1):4439.
Google Scholar
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019;25(3):427–32.
Google Scholar
Nerys-Junior A, Braga-Dias LP, Pezzuto P, Cotta-de-Almeida V, Tanuri A. Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genet Mol Biol. 2018;19(41):167–79.
Google Scholar
Miro F, Nobile C, Blanchard N, Lind M, Filipe-Santos O, Fieschi C, et al. T cell-dependent activation of dendritic cells requires IL-12 and IFN-γ signaling in T cells. J Immunol. 2006;177(6):3625–34.
Google Scholar
Gupta YH, Khanom A, Acton SE. Control of dendritic cell function within the tumor microenvironment. Front Immunol. 2022;13:733800.
Google Scholar
Tenbusch M, Kuate S, Tippler B, Gerlach N, Schimmer S, Dittmer U, et al. Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity. BMC Immunol. 2008;9:1–5.
Google Scholar
Stam AG, Santegoets SJ, Westers TM, Sombroek CC, Janssen JJ, Tillman BW, et al. CD40-targeted adenoviral GM-CSF gene transfer enhances and prolongs the maturation of human CML-derived dendritic cells upon cytokine deprivation. Br J Cancer. 2003;89(7):1162–5.
Google Scholar
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nature Cancer. 2024;5(2):240–61.
Google Scholar
Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21(10):2278–88.
Google Scholar
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, et al. Localized interleukin-12 for cancer immunotherapy. Front Immunol. 2020;11:575597.
Google Scholar
Kim YS. Tumor therapy applying membrane-bound form of cytokines. Immune network. 2009;9(5):158.
Google Scholar
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exper Mole Med. 2024:1.
Stripecke R. Lentivirus-induced dendritic cells (iDC) for immune-regenerative therapies in cancer and stem cell transplantation. Biomedicines. 2014;2(3):229–46.
Google Scholar
Gorodilova AV, Kitaeva KV, Filin IY, Mayasin YP, Kharisova CB, Issa SS, et al. The potential of dendritic cell subsets in the development of personalized immunotherapy for cancer treatment. Curr Issues Mol Biol. 2023;45(10):8053–70.
Google Scholar
Panya A, Thepmalee C, Sawasdee N, Sujjitjoon J, Phanthaphol N, Junking M, et al. Cytotoxic activity of effector T cells against cholangiocarcinoma is enhanced by self-differentiated monocyte-derived dendritic cells. Cancer Immunol Immunother. 2018;67:1579–88.
Google Scholar
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.
Google Scholar
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol. 2024;17(1):16.
Google Scholar
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, et al. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther. 2024;9(1):200.
Google Scholar
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost antitumor immunity and collapse tumor defense. J Control Release. 2017;256:26–45.
Google Scholar
Tran TH, Tran TT, Nguyen HT, Dai Phung C, Jeong JH, Stenzel MH, et al. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm. 2018;542(1–2):253–65.
Google Scholar
Sui Y, Berzofsky JA. Trained immunity inducers in cancer immunotherapy. Front Immunol. 2024;15:1427443.
Google Scholar
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep. 2025;15(1):3392.
Google Scholar
Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. Journal of Oncology. 2022;2022(1):9749363.
Google Scholar
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. dendritic cell-targeted nanoparticles enhance T cell activation and antitumor immune responses by boosting antigen presentation and blocking PD-L1 pathways. ACS Appl Mater Interfaces. 2024;16(40):53577–90.
Google Scholar
Cao Z, Yang X, Yang W, Chen F, Jiang W, Zhan S, et al. Modulation of dendritic cell function via nanoparticle-induced cytosolic calcium changes. ACS Nano. 2024;18(10):7618–32.
Google Scholar
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.
Google Scholar
Zelepukin IV, Shevchenko KG, Deyev SM. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat Commun. 2024;15(1):4366.
Google Scholar
Handa M, Beg S, Shukla R, Barkat MA, Choudhry H, Singh KK. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. J Control Release. 2021;340:48–59.
Google Scholar
Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:10 [Internet]. 2017 Sep 12 [cited 2025 Aug 25];2(10):1–17. Available from: https://www.nature.com/articles/natrevmats201756
Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Molecular Therapy [Internet]. 2018 Jun 6 [cited 2025 Aug 25];26(6):1509–19. Available from: https://www.sciencedirect.com/science/article/pii/S1525001618301187
Miao L, Lin J, Huang Y, Li L, Delcassian D, Ge Y, et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nature Commun. 2020;11:1 [Internet]. 2020 May 15 [cited 2025 Aug 25];11(1):1–13. Available from: https://www.nature.com/articles/s41467-020-16248-y
Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, Derosa F, Mir FF, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett [Internet]. 2015 [cited 2025 Aug 25];15(11):7300–6. Available from: /doi/pdf/https://doi.org/10.1021/acs.nanolett.5b02497
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.
Google Scholar
Gbian DL, Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines. 2022;10(9):2137.
Google Scholar
Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Iscience. 2021;24(12).
Alameh MG, Tombácz I, Bettini E, Lederer K, Ndeupen S, Sittplangkoon C, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–92.
Google Scholar
Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases antitumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019;37(10):1174–85.
Google Scholar
Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Communications biology. 2023;6(1):188.
Google Scholar
Zhang M, Wang Y, Li B, Yang B, Zhao M, Li B, Liu J, Hu Y, Wu Z, Ong Y, Han X. STING‐activating polymers boost lymphatic delivery of mRNA vaccine to potentiate cancer immunotherapy. Adv Mater. 2025:2412654.
Nguyen NT, Le XT, Lee WT, Lim YT, Oh KT, Lee ES, et al. STING-activating dendritic cell-targeted nanovaccines that evoke potent antigen cross-presentation for cancer immunotherapy. Bioactive Mater. 2024;42:345–65.
Google Scholar
Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369(6506):993–9.
Google Scholar
Wang Y, Li S, Hu M, Yang Y, McCabe E, Zhang L, et al. Universal STING mimic boosts antitumor immunity via preferential activation of tumor control signaling pathways. Nat Nanotechnol. 2024;19(6):856–66.
Google Scholar
Nagy NA, De Haas AM, Geijtenbeek TB, Van Ree R, Tas SW, Van Kooyk Y, et al. Therapeutic liposomal vaccines for dendritic cell activation or tolerance. Front Immunol. 2021;12:674048.
Google Scholar
Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng. 2021;5(5):455–66.
Google Scholar
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.
Google Scholar
Hong C, Schubert M, Tijhuis AE, Requesens M, Roorda M, van den Brink A, et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature. 2022;607(7918):366–73.
Google Scholar
Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019;567(7748):394–8.
Google Scholar
He Y, Hong C, Yan EZ, Fletcher SJ, Zhu G, Yang M, Li Y, Sun X, Irvine DJ, Li J, Hammond PT. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci Adv. 2020;6(24):eaba7589.
Tse SW, McKinney K, Walker W, Nguyen M, Iacovelli J, Small C, et al. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol Ther. 2021;29(7):2227–38.
Google Scholar
Shumilina E, Huber SM, Lang F. Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol. 2011;300(6):C1205–14.
Google Scholar
Salter RD, Watkins SC. Dendritic cell altered states: what role for calcium? Immunol Rev. 2009;231(1):278–88.
Google Scholar
Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leucocyte Biol. 2008;84(6):1364–73.
Google Scholar
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. Dendritic cells revisited. Annu Rev Immunol. 2021;39(1):131–66.
Herbst C, Harshyne LA, Igyártó BZ. Intracellular monitoring by dendritic cells–a new way to stay informed–from a simple scavenger to an active gatherer. Front Immunol. 2022;13:1053582.
Google Scholar
Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16(11):1260–70.
Google Scholar
Grippin A, Sayour E, Wummer B, Monsalve A, Wildes T, Dyson K, Mitchell DA. mRNA-nanoparticles to enhance and track dendritic cell migration. 2018;72.
Huang L, Liu Z, Wu C, Lin J, Liu N. Magnetic nanoparticles enhance the cellular immune response of dendritic cell tumor vaccines by realizing the cytoplasmic delivery of tumor antigens. Bioeng Transl Med. 2023;8(2):e10400.
Google Scholar
Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966–79.
Google Scholar
Wang S, Ni D, Yue H, Luo N, Xi X, Wang Y, et al. Exploration of antigen induced CaCO3 nanoparticles for therapeutic vaccine. Small. 2018;14(14):1704272.
Google Scholar
Hu YX, Han XS, Jing Q. Ca (2+) ion and autophagy. Autophagy Biol Diseases Basic Sci. 2019;28:151–66.
Wang D, Rayani S, Marshall JL. Carcinoembryonic antigen as a vaccine target. Expert Rev Vaccines. 2008;7(7):987–93.
Google Scholar
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, et al. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 2016;228:26–37.
Google Scholar
Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.
Google Scholar
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, et al. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnol. 2023;21(1):347.
Google Scholar
Lee SB, Ahn SB, Lee SW, Jeong SY, Ghilsuk Y, Ahn BC, Kim EM, Jeong HJ, Lee J, Lim DK, Jeon YH. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater. 2016;8(6):e281.
Lee IH, Kwon HK, An S, Kim D, Kim S, Yu MK, et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angewandte Chemie-International Edition. 2012;51(35):8800.
Google Scholar
Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, et al. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release. 2017;256:56–67.
Google Scholar
Fernández TD, Pearson JR, Leal MP, Torres MJ, Blanca M, Mayorga C, et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1–2.
Google Scholar
Le Guével X, Perez Perrino M, Fernández TD, Palomares F, Torres MJ, Blanca M, et al. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl Mater Interfaces. 2015;7(37):20945–56.
Google Scholar
Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE. 2014;9(5):e96584.
Google Scholar
Affandi AJ, Grabowska J, Olesek K, Lopez Venegas M, Barbaria A, Rodríguez E, et al. Selective tumor antigen vaccine delivery to human CD169+ antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci. 2020;117(44):27528–39.
Google Scholar
Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent antitumor responses. Biomaterials. 2015;40:88–97.
Google Scholar
Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJ. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 2011;17(8):2270–80.
Google Scholar
Rueda F, Eich C, Cordobilla B, Domingo P, Acosta G, Albericio F, et al. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. Immunobiology. 2017;222(11):989–97.
Google Scholar
Suzuki R, Utoguchi N, Kawamura K, Kadowaki N, Okada N, Takizawa T, Uchiyama T, Maruyama K. Development of effective antigen delivery carrier to dendritic cells via Fc receptor in cancer immunotherapy. Yakugaku Zasshi: J Pharmaceutical Soc Japan. 127(2):301–6.
Hossain MK, Vartak A, Sucheck S, Wall KA. Augmenting vaccine immunogenicity through the use of natural human anti-Rha antibodies and monoclonal Fc domains. J Immunol. 2018;200(1_Supplement):181–4.
Hossain MK, Vartak A, Sucheck SJ, Wall KA. Liposomal fc domain conjugated to a cancer vaccine enhances both humoral and cellular immunity. ACS Omega. 2019;4(3):5204–8.
Google Scholar
Lahoud MH, Ahmet F, Zhang JG, Meuter S, Policheni AN, Kitsoulis S, et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc Natl Acad Sci. 2012;109(40):16270–5.
Google Scholar
Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomed. 2014:5231–46.
Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.
Google Scholar
Neubert K, Lehmann CH, Heger L, Baranska A, Staedtler AM, Buchholz VR, et al. Antigen delivery to CD11c+ CD8− dendritic cells induces protective immune responses against experimental melanoma in mice in vivo. J Immunol. 2014;192(12):5830–8.
Google Scholar
Luci C, Anjuère F. IFN-λs and BDCA3+/CD8α+ dendritic cells: towards the design of novel vaccine adjuvants? Expert Rev Vaccines. 2011;10(2):159–61.
Google Scholar
Tullett KM, Rojas IM, Minoda Y, Tan PS, Zhang JG, Smith C, et al. Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+ T cell recognition. JCI insight. 2016;1(7):e87102.
Google Scholar
Sehgal K, Ragheb R, Fahmy TM, Dhodapkar MV, Dhodapkar KM. Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15–dependent DC crosstalk. J Immunol. 2014;193(5):2297–305.
Google Scholar
Ghinnagow R, De Meester J, Cruz LJ, Aspord C, Corgnac S, Macho-Fernandez E, et al. Co-delivery of the NKT agonist α-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses. Oncoimmunology. 2017;6(9):e1339855.
Google Scholar
Schetters ST, Kruijssen LJ, Crommentuijn MH, Kalay H, Ochando J, Den Haan JM, et al. Mouse DC-SIGN/CD209a as target for antigen delivery and adaptive immunity. Front Immunol. 2018;9:990.
Google Scholar
Stolk DA, De Haas A, Vree J, Duinkerken S, Lübbers J, Van de Ven R, et al. Lipo-based vaccines as an approach to target dendritic cells for induction of T-and iNKT cell responses. Front Immunol. 2020;11:990.
Google Scholar
Gargett T, Abbas MN, Rolan P, Price JD, Gosling KM, Ferrante A, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother. 2018;67:1461–72.
Google Scholar
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27.
Google Scholar
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular vesicles: advanced tools for disease diagnosis, monitoring, and therapies. Int J Mol Sci. 2024;26(1):189.
Google Scholar
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6(1):7321.
Google Scholar
Henao Agudelo JS, Braga TT, Amano MT, Cenedeze MA, Cavinato RA, Peixoto-Santos AR, et al. Mesenchymal stromal cell-derived microvesicles regulate an internal pro-inflammatory program in activated macrophages. Front Immunol. 2017;8:881.
Google Scholar
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, et al. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer. 2019;18(1):50.
Google Scholar
Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020;154:259–69.
Google Scholar
Johnson V, Vasu S, Kumar US, Kumar M. Surface-engineered extracellular vesicles in cancer immunotherapy. Cancers. 2023;15(10):2838.
Google Scholar
Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves antitumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep. 2015;5(1):17622.
Google Scholar
Matsuzaka Y, Yashiro R. Regulation of extracellular vesicle-mediated immune responses against antigen-specific presentation. Vaccines. 2022;10(10):1691.
Google Scholar
Horrevorts SK, Stolk DA, van de Ven R, Hulst M, van Het Hof B, Duinkerken S, et al. Glycan-modified apoptotic melanoma-derived extracellular vesicles as antigen source for antitumor vaccination. Cancers. 2019;11(9):1266.
Google Scholar
Choi ES, Song J, Kang YY, Mok H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol Biosci. 2019;19(7):1900042.
Google Scholar
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, et al. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnol. 2024;22(1):41.
Google Scholar
Kalkusova K, Taborska P, Stakheev D, Smrz D. The role of miR-155 in antitumor immunity. Cancers. 2022;14(21):5414.
Google Scholar
Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 2019;219:152–62.
Google Scholar
Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer. 2022;22(5):259–79.
Google Scholar
Jung IY, Lee J. Unleashing the therapeutic potential of CAR-T cell therapy using gene-editing technologies. Mol Cells. 2018;41(8):717–23.
Google Scholar
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discovery. 2014;13(10):759–80.
Google Scholar
Gerlach AM, Steimle A, Krampen L, Wittmann A, Gronbach K, Geisel J, et al. Role of CD40 ligation in dendritic cell semimaturation. BMC Immunol. 2012;13:1–1.
Google Scholar
Ferrer IR, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci. 2011;108(51):20701–6.
Google Scholar
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31(33):1902575.
Google Scholar
Oh SA, Wu DC, Cheung J, Navarro A, Xiong H, Cubas R, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature cancer. 2020;1(7):681–91.
Google Scholar
Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv. 2022;8(37):eabp9435.
Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359.
Google Scholar
Gupta N, Polkoff K, Qiao L, Cheng K, Piedrahita J. 200 Developing exosomes as a mediator for CRISPR/Cas-9 delivery. Reprod Fertility Dev. 2019;31(1):225.
Abbasi R, Alamdari-Mahd G, Maleki-Kakelar H, Momen-Mesgin R, Ahmadi M, Sharafkhani M, Rezaie J. Recent advances in the application of engineered exosomes from mesenchymal stem cells for regenerative medicine. Euro J Pharmacol. 2025;177236.
Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A simple and quick method for loading proteins in extracellular vesicles. Pharmaceuticals. 2021;14(4):356.
Google Scholar
Dubey S, Chen Z, Talis A, Molotkov A, Ali A, Mintz A, Momen-Heravi F. An exosome-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. bioRxiv. 2023;2023–06.
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering exosomes for therapeutic applications: decoding biogenesis, content modification, and cargo loading strategies. Int J Nanomed. 2024;7137–64.
Ye Y, Zhang X, Xie F, Xu B, Xie P, Yang T, et al. An engineered exosome for delivering sgRNA: Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater Sci. 2020;8(10):2966–76.
Google Scholar
Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, et al. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracellular Vesicles. 2022;11(4):e12196.
Google Scholar
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, et al. Engineered Cas9 extracellular vesicles as a novel gene editing tool. J Extracellular Vesicles. 2022;11(5):e12225.
Google Scholar
Elsharkasy OM, Hegeman CV, Lansweers I, Cotugno OL, de Groot IY, de Wit ZE, Liang X, Garcia-Guerra A, Moorman NJ, Lefferts J, de Voogt WS. A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release. BioRxiv. 2024;2024–05.
Yao X, Lyu P, Yoo K, Yadav MK, Singh R, Atala A, et al. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. J Extracellular Vesicles. 2021;10(5):e12076.
Google Scholar
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: a review of biocompatibility and toxicity concerns. Environ Pollution [Internet]. 2024 Apr 1 [cited 2025 Aug 25];346:123617. Available from: https://www.sciencedirect.com/science/article/pii/S0269749124003312
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Reviews Drug Discovery 2020 20:2 [Internet]. 2020 Dec 4 [cited 2025 Aug 25];20(2):101–24. Available from: https://www.nature.com/articles/s41573-020-0090-8
Pan Y, Zeng F, Luan X, He G, Qin S, Lu Q, et al. Polyamine-depleting hydrogen-bond organic frameworks unleash dendritic cell and T cell vigor for targeted CRISPR/Cas-assisted cancer immunotherapy. Adv Mater. 2025;37(13):2411886.
Google Scholar
Lanza G, Gafà R, Maestri I, Santini A, Matteuzzi M, Cavazzini L. Immunohistochemical pattern of MLH1/MSH2 expression is related to clinical and pathological features in colorectal adenocarcinomas with microsatellite instability. Mod Pathol. 2002;15(7):741–9.
Google Scholar
Wylie B, Macri C, Mintern JD, Waithman J. Dendritic cells and cancer: from biology to therapeutic intervention. Cancers. 2019;11(4):521.
Google Scholar
Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37(12):855–65.
Google Scholar
Rosa FF, Pires CF, Kurochkin I, Ferreira AG, Gomes AM, Palma LG, Shaiv K, Solanas L, Azenha C, Papatsenko D, Schulz O. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci Immunol. 2018;3(30):eaau4292.
Rosa FF, Pires CF, Zimmermannova O, Pereira CF. Direct reprogramming of mouse embryonic fibroblasts to conventional type 1 dendritic cells by enforced expression of transcription factors. Bio-protocol. 2020;10(10):e3619.
Shimosakai R, Khalil IA, Kimura S, Harashima H. mRNA-Loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines. Pharmaceuticals [Internet]. 2022 Aug 1 [cited 2025 Aug 25];15(8):1017. Available from: https://www.mdpi.com/1424-8247/15/8/1017/htm
Luozhong S, Yuan Z, Sarmiento T, Chen Y, Gu W, McCurdy C, et al. Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Lett [Internet]. 2022 Oct 26 [cited 2025 Aug 25];22(20):8304–11. Available from: /doi/pdf/https://doi.org/10.1021/acs.nanolett.2c03234
Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–95.
Google Scholar
Wang S, Zhu Y, Du S, Zheng Y. Preclinical Advances in LNP-CRISPR therapeutics for solid tumor treatment. Cells. 2024;13(7):568.
Google Scholar
Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol. 2019;14(10):974–80.
Google Scholar
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232.
Google Scholar
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80.
Google Scholar
Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–26.
Google Scholar
Lee YJ, Kim Y, Park SH, Jo JC. Plasmacytoid dendritic cell neoplasms. Blood Res. 2023;58(S1):S90–5.
Google Scholar
Jeng LB, Liao LY, Shih FY, Teng CF. Dendritic-cell-vaccine-based immunotherapy for hepatocellular carcinoma: clinical trials and recent preclinical studies. Cancers. 2022;14(18):4380.
Google Scholar
Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2021;12(11):620374.
Google Scholar
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother. 2023;1(164):114954.
Google Scholar
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity. 2023;56(10):2218–30.
Google Scholar
Kumar C, Kohli S, Chiliveru S, Jain M, Sharan B. Complete remission of rare adenocarcinoma of the oropharynx with APCEDEN®(dendritic cell-based vaccine): a case report. Clinical Case Reports. 2017;5(10):1692.
Google Scholar
Squadrito ML, Cianciaruso C, Hansen SK, De Palma M. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nat Methods. 2018;15(3):183–6.
Google Scholar
Hurvitz SA, Timmerman JM. Recombinant, tumor-derived idiotype vaccination for indolent B cell non-Hodgkin’s lymphomas: a focus on FavId™. Expert Opin Biol Ther. 2005;5(6):841–52.
Google Scholar
Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell. 2016;29(6):820–31.
Google Scholar
Salomon R, Rotem H, Katzenelenbogen Y, Weiner A, Cohen Saban N, Feferman T, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat Cancer. 2022;3(3):287–302.
Google Scholar
Study Details. A study to investigate the novel agent BNT111 and cemiplimab in combination or as single agents in patients with advanced melanoma that has not responded to other forms of treatment. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04526899
Study Details. A study of the efficacy and safety of adjuvant autogene cevumeran plus atezolizumab and mFOLFIRINOX Versus mFOLFIRINOX Alone in Participants With Resected PDAC. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT05968326
Study Details. A study of ELI-002 in subjects with KRAS mutated pancreatic ductal adenocarcinoma (PDAC) and other solid tumors. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04853017
Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberría I, et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer [Internet]. 2019 May 2 [cited 2025 Aug 25];7(1). Available from: https://jitc.bmj.com/content/7/1/116
Study Details. Study of TLR9 agonist vidutolimod (CMP-001) in Combination with Nivolumab Vs. Nivolumab. ClinicalTrials.gov [Internet]. [cited 2025 Aug 25]. Available from: https://clinicaltrials.gov/study/NCT04401995
Cornel AM, Van Til NP, Boelens JJ, Nierkens S. Strategies to genetically modulate dendritic cells to potentiate antitumor responses in hematologic malignancies. Front Immunol. 2018;18(9):982.
Google Scholar
Veron P, Allo V, Riviere C, Bernard J, Douar AM, Masurier C. Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J Virol. 2007;81(10):5385–94.
Google Scholar
Li Z, Wang X, Janssen JM, Liu J, Tasca F, Hoeben RC, Gonçalves MA. Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs. Nucleic Acids Res. 2025;53(2):gkae1213.
Zhang Y, Peng L, Mumper RJ, Huang L. Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials [Internet]. 2013 Nov 1 [cited 2025 Aug 25];34(33):8459–68. Available from: https://www.sciencedirect.com/science/article/pii/S014296121300848X
Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, et al. Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood. 2005;105(10):3824–32.
Google Scholar
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Molecular Therapy Nucleic Acids. 2019;7(16):326–34.
Google Scholar
Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Editing. 2021;1(2):100007.
Google Scholar
Humbert JM, Halary F. Viral and non-viral methods to genetically modify dendritic cells. Curr Gene Ther. 2012;12(2):127–36.
Google Scholar
Asmamaw MM. Viral vectors for the in vivo delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol. 2022;12(10):895713.
Google Scholar
Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9–rapid, efficient and specific choices for genome modifications. J Genet Genomics. 2013;40(6):281–9.
Google Scholar
Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–85.
Google Scholar
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:7607.
Google Scholar
Zelkoski AE, Lu Z, Sukumar G, Dalgard C, Said H, Alameh MG, et al. Ionizable lipid nanoparticles of mRNA vaccines elicit NF-κB and IRF responses through toll-like receptor 4. NPJ Vaccines. 2025;10(1):1–13.
Google Scholar
Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci USA. 2005;102(51):18264–8.
Google Scholar
Heidegger S, Gößl D, Schmidt A, Niedermayer S, Argyo C, Endres S, et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2015;8(2):938–48.
Google Scholar
Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018;4(4):484–92.
Google Scholar
Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020;6(25):4462–81.
Google Scholar
Wang X, Li X, Ito A, Sogo Y, Ohno T. Synergistic antitumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomater. 2022;145:235–45.
Google Scholar
Huang Y, Nahar S, Alam MM, Hu S, McVicar DW, Yang D. Reactive oxygen species-sensitive biodegradable mesoporous silica nanoparticles harboring theravac elicit tumor-specific immunity for colon tumor treatment. ACS Nano. 2023;17(20):19740–52.
Google Scholar
Godakhindi V, Yazdimamaghani M, Dam SK, Ferdous F, Wang AZ, Tarannum M, et al. Optimized fabrication of dendritic mesoporous silica nanoparticles as efficient delivery system for cancer immunotherapy. Small. 2024;20(50):2402802.
Google Scholar
Le Guével X, Palomares F, Torres MJ, Blanca M, Fernandez TD, Mayorga C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. RSC Adv. 2015;5(104):85305–9.
Google Scholar
Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 2011;6(10):675–82.
Google Scholar
Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano. 2019;13(12):13884–98.
Google Scholar
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, et al. CD36-Binding Amphiphilic Nanoparticles for Attenuation of α-Synuclein-Induced Microglial Activation. Adv Nanobiomed Res [Internet]. 2022 Jun 1 [cited 2025 Aug 25];2(6):2100120. Available from: https://doi.org/10.1002/anbr.202100120
Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, et al. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation. Journal of Controlled Release [Internet]. 2010 May 10 [cited 2025 Aug 25];143(3):311–7. Available from: https://www.sciencedirect.com/science/article/pii/S0168365910000210
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Can Res. 2010;70(19):7465–75.
Google Scholar
Chen WH, Lecaros RLG, Tseng YC, Huang L, Hsu YC. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett [Internet]. 2015 Apr 1 [cited 2025 Aug 25];359(1):65–74. Available from: https://www.sciencedirect.com/science/article/pii/S0304383515000336?via%3Dihub
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, et al. Carnitine palmitoyltransferase system: a new target for anti-inflammatory and anticancer therapy? Front Pharmacol. 2021;26(12):760581.
Google Scholar
Clark AT, Russo-Savage L, Ashton LA, Haghshenas N, Amselle NA, Schulman IG. A mutation in LXRα uncovers a role for cholesterol sensing in limiting metabolic dysfunction-associated steatohepatitis. Nature Communications 2025 16:1 [Internet]. 2025 Jan 28 [cited 2025 Aug 25];16(1):1–19. Available from: https://www.nature.com/articles/s41467-025-56565-8
Liu C, Wang J, Zhang Y, Zha W, Zhang H, Dong S, et al. Efficient delivery of PKN3 shRNA for the treatment of breast cancer via lipid nanoparticles. Bioorg Med Chem [Internet]. 2022 Sep 1 [cited 2025 Aug 25];69:116884. Available from: https://www.sciencedirect.com/science/article/pii/S0968089622002760
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, et al. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep [Internet]. 2023 May 30 [cited 2025 Aug 25];42(5):112372. Available from: https://www.sciencedirect.com/science/article/pii/S2211124723003832
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;15(11):938.
Google Scholar
Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci U S A [Internet]. 2019 Oct 15 [cited 2025 Aug 25];116(42):21150–9. Available from: https://doi.org/10.1073/pnas.1906182116?download=true
Arjunan P, Kathirvelu D, Mahalingam G, Goel AK, Zacharaiah UG, Srivastava A, et al. Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders. Acta Pharm Sin B [Internet]. 2024 Jul 1 [cited 2025 Aug 25];14(7):2885–900. Available from: https://www.sciencedirect.com/science/article/pii/S2211383524001448
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, et al. Lipid nanoparticles for siRNA delivery in cancer treatment. Journal of Controlled Release [Internet]. 2023 Sep 1 [cited 2025 Aug 25];361:130–46. Available from: https://www.sciencedirect.com/science/article/pii/S0168365923004789
Novitskiy S, Ryzhov S, Zaynagetdinov R, Goldstein A, Tikhomirov O, Biaggioni I, Carbone D, Feoktistov I, Dikov M. Adenosine and A2B adenosine receptor in regulation of dendritic cell differentiation and properties. Cancer Res. 2008;68(9_Supplement):2472.
Schiemann K, Belousova N, Matevossian A, Nallaparaju KC, Kradjian G, Pandya M, et al. Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo. Mol Cancer Ther [Internet]. 2024 Nov 1 [cited 2025 Aug 25];23(11):1517–29. Available from: /mct/article/23/11/1517/749314/Dual-A2A-A2B-Adenosine-Receptor-Antagonist-M1069
Chen S, Li G, Jiang Z, Xu Y, Aipire A, Li J. Regulation of dendritic cell biology by amino acids and their transporters. Front Immunol. 2025;16:1626973.
Google Scholar
Kim M, Tomek P. Tryptophan: a rheostat of cancer immune escape mediated by immunosuppressive enzymes IDO1 and TDO. Front Immunol. 2021;23(12):636081.
Google Scholar
Endo R, Nakamura T, Kawakami K, Sato Y, Harashima H. The silencing of indoleamine 2,3-dioxygenase 1 (IDO1) in dendritic cells by siRNA-loaded lipid nanoparticles enhances cell-based cancer immunotherapy. Scientific Reports 2019 9:1 [Internet]. 2019 Aug 5 [cited 2025 Aug 25];9(1):1–11. Available from: https://www.nature.com/articles/s41598-019-47799-w
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact. 2015;5(234):261–73.
Google Scholar
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, et al. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nature Communications 2024 15:1 [Internet]. 2024 Aug 27 [cited 2025 Aug 25];15(1):1–20. Available from: https://www.nature.com/articles/s41467-024-51571-8
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Molecular Metabolism. 2020;1(33):48–66.
Google Scholar
Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Srinivas SR, et al. Molecular Mechanism of SLC5A8 Inactivation in Breast Cancer. Mol Cell Biol [Internet]. 2013 Oct 1 [cited 2025 Aug 25];33(19):3920. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3811868/
Pandey AR, Kumar A, Shrivastava NK, Singh J, Yadav S, Sonkar AB, et al. Advancing siRNA Therapeutics targeting MCT-4: A Multifaceted approach integrating Arithmetical Designing, Screening, and molecular dynamics validation. Int Immunopharmacol [Internet]. 2025 Feb 6 [cited 2025 Aug 25];147:113980. Available from: https://www.sciencedirect.com/science/article/pii/S1567576924025025
Setargew YF, Wyllie K, Grant RD, Chitty JL, Cox TR. Targeting lysyl oxidase family meditated matrix cross-linking as an anti-stromal therapy in solid tumors. Cancers. 2021;13(3):491.
Google Scholar
Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nature Communications 2020 11:1 [Internet]. 2020 May 15 [cited 2025 Aug 25];11(1):1–17. Available from: https://www.nature.com/articles/s41467-020-16199-4
Pappano WN, Zhang Q, Tucker LA, Tse C, Wang J. Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells. BMC Cancer [Internet]. 2014 Jun 13 [cited 2025 Aug 25];14(1):430. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4229861/
1Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME, et al. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjug Chem [Internet]. 2018 Feb 21 [cited 2025 Aug 25];29(2):445–50. Available from: https://doi.org/10.1021/acs.bioconjchem.7b00768?ref=article_openPDF
Hamouda AEI, Filtjens J, Brabants E, Kancheva D, Debraekeleer A, Brughmans J, et al. Intratumoral delivery of lipid nanoparticle-formulated mRNA encoding IL-21, IL-7, and 4-1BBL induces systemic antitumor immunity. Nature Communications 2024 15:1 [Internet]. 2024 Dec 6 [cited 2025 Aug 25];15(1):1–20. Available from: https://www.nature.com/articles/s41467-024-54877-9
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother. 2020;16(2):377–87.
Google Scholar
Zhu Y, Yao ZC, Li S, Ma J, Wei C, Yu D, et al. An mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite for cancer immunotherapy. Nature Communications 2025 16:1 [Internet]. 2025 Jul 1 [cited 2025 Aug 25];16(1):1–16. Available from: https://www.nature.com/articles/s41467-025-61299-8
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, et al. Injectable Nanoparticle‐Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. Advanced Science [Internet]. 2022 Oct 1 [cited 2025 Aug 25];9(28):2103677. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9534946/
Xu Y, Xu X, Zhang Q, Lu P, Xiang C, Zhang L, et al. Gp130-dependent STAT3 activation in M-CSF–derived macrophages exaggerates tumor progression. Genes Diseases. 2024;11(3):100985.
Google Scholar
Zewdu A, Braggio D, Lopez G, Batte K, Khurshid S, Costas de Faria F, Bid HK, Koller D, Casadei L, Ladner KJ, Wang D. Blockade of interleukin-6 (IL-6) signaling in dedifferentiated liposarcoma (DDLPS) decreases mouse double minute 2 (MDM2) oncogenicity via alternative splicing. bioRxiv. 2024 Feb 22:2024–02.
Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Investig. 2003;111(5):727–35.
Google Scholar
Wang Z, Chen Y, Wu H, Wang M, Mao L, Guo X, et al. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep [Internet]. 2024 Dec 1 [cited 2025 Aug 25];14(1):1–15. Available from: https://www.nature.com/articles/s41598-024-57997-w
Hsu HH, Lin YM, Shen CY, Shibu MA, Li SY, Chang SH, et al. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells. Int J Mol Sci [Internet]. 2017 Jun 1 [cited 2025 Aug 25];18(6):1132. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5485956/
Ahn YH, Hong SO, Kim JH, Noh KH, Song KH, Lee YH, et al. The siRNA cocktail targeting interleukin 10 receptor and transforming growth factor-β receptor on dendritic cells potentiates tumor antigen-specific CD8+ T cell immunity. Clin Exp Immunol [Internet]. 2015 Jul 1 [cited 2025 Aug 25];181(1):164. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4469167/
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022, Vol 12, Page 1450 [Internet]. 2022 Oct 9 [cited 2025 Aug 25];12(10):1450. Available from: https://www.mdpi.com/2218-273X/12/10/1450/htm
Yokosawa T, Wakasugi K. Tryptophan-starved human cells overexpressing tryptophanyl-tRNA synthetase enhance high-affinity tryptophan uptake via enzymatic production of tryptophanyl-AMP. Int J Mol Sci. 2023;24(20):15453.
Google Scholar
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OM, et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol. 2020;24(11):512.
Google Scholar
Johnson LA, Banerji S, Lagerholm BC, Jackson DG. Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx. Life Sci Alliance. 2021;4(5).
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, et al. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS Cent Sci [Internet]. 2024 Mar 27 [cited 2025 Aug 25];10(3):579–94. Available from: https://doi.org/10.1021/acscentsci.3c01440
Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy GP, et al. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res [Internet]. 2011 Mar 1 [cited 2025 Aug 25];71(5):1792–804. Available from: /cancerres/article/71/5/1792/575377/Activation-of-TYRO3-AXL-Tyrosine-Kinase-Receptors
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, et al. MERTK inhibition selectively activates a DC–T-cell axis to provide anti-leukemia immunity. Leukemia. 2024;38(12):2685–98.
Google Scholar
Im K, Choi YJ, Kim DH, Kim DS, Ban K, Ji W, et al. AXL receptor tyrosine kinase inhibition improves the antitumor effects of CD8+ T cells by inducing CD103+ dendritic cell-mediated T cell priming. Biochem Biophys Res Commun. 2023;5(680):7–14.
Google Scholar
Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC, Henson PM, et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood [Internet]. 2007 Feb 1 [cited 2025 Aug 25];109(3):1026–33. Available from: https://doi.org/10.1182/blood-2006-05-021634
Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol [Internet]. 2011 Nov 30 [cited 2025 Aug 25];29(11):1046–51. Available from: https://www.nature.com/articles/nbt.1990
Schroeder GM, An Y, Cai ZW, Chen XT, Clark C, Cornelius LAM, et al. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4- ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the met kinase superfamily. J Med Chem [Internet]. 2009 Mar 12 [cited 2025 Aug 25];52(5):1251–4. Available from: https://doi.org/10.1021/jm801586s
Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T, et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia [Internet]. 2009 Nov 27 [cited 2025 Aug 25];23(3):477–85. Available from: https://www.nature.com/articles/leu2008334
Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci. 2015;112(21):6682–7.
Google Scholar
Moon TJ, Ta HM, Bhalotia A, Paulsen KE, Hutchinson DW, Arkema GM, et al. Nanoparticles targeting immune checkpoint protein VISTA induce potent antitumor immunity. J Immunother Cancer [Internet]. 2024 Aug 28 [cited 2025 Aug 25];12(8):8977. Available from: https://jitc.bmj.com/content/12/8/e008977
Zhang Y, Wu L, Li Z, Zhang W, Luo F, Chu Y, et al. Glycocalyx-Mimicking Nanoparticles Improve Anti-PD-L1 Cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules [Internet]. 2018 Jun 11 [cited 2025 Aug 25];19(6):2098–108. Available from: https://doi.org/10.1021/acs.biomac.8b00305
Kartikasari AE, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, et al. Therapeutic cancer vaccines—T cell responses and epigenetic modulation. Front Immunol. 2019;25(9):3109.
Google Scholar
Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, et al. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019;13(3):3083–94.
Google Scholar
Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.
Google Scholar
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy—current perspectives and future directions. Cell. 2023;186(8):1652–69.
Google Scholar
Dai JM, Zhang XQ, Zhang JJ, Yang WJ, Yang XM, Bian H, et al. Blockade of mIL-6R alleviated lipopolysaccharide-induced systemic inflammatory response syndrome by suppressing NF-κB-mediated Ccl2 expression and inflammasome activation. MedComm (Beijing) [Internet]. 2022 Jun 1 [cited 2025 Aug 25];3(2):e132. Available from: https://doi.org/10.1002/mco2.132
Sato K. Suppression of gp130 attenuated insulin-mediated signaling and glucose uptake in skeletal muscle cells. Sci Rep [Internet]. 2024 Dec 1 [cited 2025 Aug 25];14(1):1–9. Available from: https://www.nature.com/articles/s41598-024-68613-2
