Evidence for the evolution of male and female cardinals’ plumage colouration being affected by both natural and sexual selection | BMC Ecology and Evolution

  • Darwin C. The descent of man, and selection in relation to sex. London: John Murray; 1871.

  • Dale J, et al. The effects of life history and sexual selection on male and female plumage colouration. Nature. 2015;527(7578):367–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prum RO. The Lande-Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. Evolution. 2010;64(11):3085–100.

    Article 
    PubMed 

    Google Scholar 

  • Cooney CR, et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat Commun. 2019;10(1):1773.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardoso GC, Mota PG. Speciational evolution of coloration in the genus carduelis. Evolution. 2008;62(4):753–62.

    Article 
    PubMed 

    Google Scholar 

  • Martin TE, Badyaev AV. Sexual dichromatism in birds: importance of nest predation and nest location for females versus males. Evolution. 1996;50(6):2454–60.

    Article 
    PubMed 

    Google Scholar 

  • Hill GE, McGraw KJ. Bird coloration. Cambridge, Mass.: Harvard University Press; 2006.

    Book 

    Google Scholar 

  • Stoddard MC, Prum RO. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. Am Nat. 2008;171(6):755–76.

    Article 
    PubMed 

    Google Scholar 

  • Cooney CR, et al. Latitudinal gradients in avian colourfulness. Nat Ecol Evol. 2022;6(5):622–9.

    Article 
    PubMed 

    Google Scholar 

  • Carballo L, et al. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J Evol Biol. 2020;33(11):1543–57.

    Article 
    PubMed 

    Google Scholar 

  • Hamilton WJ, Heppner F. Radiant solar energy and the function of black homeotherm pigmentation: an hypothesis. Science. 1967;155(3759):196–7.

    Article 
    PubMed 

    Google Scholar 

  • Leitão AV, Monteiro AH, Mota PG. Ultraviolet reflectance influences female preference for colourful males in the European Serin. Behav Ecol Sociobiol. 2014;68(1):63–72.

    Article 

    Google Scholar 

  • Leitao AV, et al. Female and male plumage colour signals aggression in a dichromatic tropical Songbird. Anim Behav. 2019;150:285–301.

    Article 

    Google Scholar 

  • Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev. 2023;98(2):540–66.

    Article 
    PubMed 

    Google Scholar 

  • Kemp DJ, et al. An integrative framework for the appraisal of coloration in nature. Am Nat. 2015;185(6):705–24.

    Article 
    PubMed 

    Google Scholar 

  • Shultz AJ, Burns KJ. The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae). Evolution. 2017;71(4):1061–74.

    Article 
    PubMed 

    Google Scholar 

  • Spottiswoode C, Møller AP. Extrapair paternity, migration, and breeding synchrony in birds. Behav Ecol. 2004;15:41–57.

    Article 

    Google Scholar 

  • Fitzpatrick S. Colourful migratory birds: evidence for a mechanism other than parasite resistance for the maintenance of ‘good genes’ sexual selection. Proc Biol Sci. 1994;257:155–60.

  • Spottiswoode CN, Tottrup AP, Coppack T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc Royal Soc B-Biological Sci. 2006;273(1605):3023–9.

    Article 

    Google Scholar 

  • Simpson RK, Johnson MA, Murphy TG. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers. Proc Biol Sci. 2015;282(1809).

  • Galván I, et al. On showy dwarfs and sober giants: body size as a constraint for the evolution of bird plumage colouration. Acta Ornithologica. 2013;48(1):65–80.

    Article 

    Google Scholar 

  • Ricklefs RE. Insights from comparative analyses of aging in birds and mammals. Aging Cell. 2010;9(2):273–84.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delhey K, et al. The evolution of carotenoid-based plumage colours in passerine birds. J Anim Ecol. 2023;92(1):66–77.

    Article 
    PubMed 

    Google Scholar 

  • Endler JA. The color of light in forests and its implications. Ecol Monogr. 1993;63(1):1–27.

    Article 

    Google Scholar 

  • McNaught MK, Owens IPF. Interspecific variation in plumage colour among birds: species recognition or light environment? J Evol Biol. 2002;15(4):505–14.

    Article 

    Google Scholar 

  • Marchetti K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature. 1993;362(6416):149–52.

    Article 

    Google Scholar 

  • Soler JJ, Moreno J. Evolution of sexual dichromatism in relation to nesting habits in European passerines: a test of wallace’s hypothesis. J Evol Biol. 2012;25(8):1614–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Badyaev AV. Altitudinal variation in sexual dimorphism: a new pattern and alternative hypotheses. Behav Ecol. 1997;8(6):675–90.

    Article 

    Google Scholar 

  • Delhey K, et al. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol Lett. 2019;22(4):726–36.

    Article 
    PubMed 

    Google Scholar 

  • Bleiweiss R. Covariation of sexual dichromatism and plumage colours in lekking and non-lekking birds: A comparative analysis. Evol Ecol. 1997;11(2):217–35.

    Article 

    Google Scholar 

  • Prum RO. Phylogenetic tests of alternative intersexual selection mechanisms: trait macroevolution in a polygynous clade (Aves: Pipridae). Am Nat. 1997;149(4):668–92.

    Article 

    Google Scholar 

  • Delhey K, et al. Evolutionary predictors of the specific colors of birds. Proc Natl Acad Sci U S A. 2023;120(34):e2217692120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tazzyman SJ, Iwasa Y, Pomiankowski A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution. 2014;68(1):216–29.

    Article 
    PubMed 

    Google Scholar 

  • Dunn PO, Armenta JK, Whittingham LA. Natural and sexual selection act on different axes of variation in avian plumage color. Sci Adv. 2015;1(2):e1400155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irwin RE. The evolution of plumage dichromatism in the New-World Blackbirds – Social selection on female brightness. Am Nat. 1994;144(6):890–907.

    Article 

    Google Scholar 

  • Weaver RJ, et al. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat Commun. 2018;9(1):73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill GE et al. Plumage redness signals mitochondrial function in the house finch. Proc Biol Sci. 2019;286(1911).

  • Weaver RJ, Koch RE, Hill GE. What maintains signal honesty in animal colour displays used in mate choice? Philos Trans R Soc Lond B Biol Sci. 2017;372(1724).

  • Simons MJ, Cohen AA, Verhulst S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-A meta-analysis. PLoS ONE. 2012;7(8):e43088.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Rodriguez L, Mougeot F, Alonso-Alvarez C. Carotenoid-based coloration predicts resistance to oxidative damage during immune challenge. J Exp Biol. 2010;213(Pt 10):1685–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moller AP, et al. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biology Reviews. 2000;11(3):137–59.

    Google Scholar 

  • Lozano GA. Carotenoids, Parasites, and sexual selection. Oikos. 1994;70(2):309–11.

    Article 

    Google Scholar 

  • Hill GE. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett. 2011;14(7):625–34.

    Article 
    PubMed 

    Google Scholar 

  • Koch RE, et al. Mechanisms of carotenoid metabolism: understanding the links between red coloration, cellular respiration, and individual quality. Integr Comp Biol. 2025.

  • Lopes RJ, et al. Genetic basis for red coloration in birds. Curr Biol. 2016;26(11):1427–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler DW, Billerman SM, Lovette IJ. Cardinals and allies (Cardinalidae), version 1.0. In: Billerman SM, Rodewald PG, Schulenberg TS, editors. Birds of the World. Ithaca, NY, USA: Cornell Lab of Ornithology; 2020.

  • Barker FK, et al. New insights into new world biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk. 2015;132(2):333–48.

    Article 

    Google Scholar 

  • Scott BF, Shultz AJ, Burns KJ. The impact of habitat and migration on plumage colour in Cardinalidae. Biol J Linn Soc. 2023;141(2):264–77.

    Article 

    Google Scholar 

  • Leitão AV, et al. Evidence for multiple functions in a sexually selected ornament. Anim Behav. 2015;110:155–61.

    Article 

    Google Scholar 

  • Maia R, et al. Pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol. 2013;4(10):906–13.

    Article 

    Google Scholar 

  • Core Team R. R: A Language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2022.

  • Ödeen A, Håstad O, Alström P. Evolution of ultraviolet vision in the largest avian radiation – the passerines. BMC Evol Biol. 2011;11.

  • Vorobyev M, et al. Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A. 1998;183(5):621–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hart NS, Vorobyev M. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol Neuroethol Sens Neural Behav Physiol. 2005;191(4):381–92.

    Article 

    Google Scholar 

  • Stoddard MC, Prum RO. How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol. 2011;22(5):1042–52.

    Article 

    Google Scholar 

  • Delhey K. The colour of an avifauna: A quantitative analysis of the colour of Australian birds. Sci Rep. 2015;5:18514.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunning JB Jr. CRC handbook of avian body masses. 2nd ed. CRC; 2008.

  • Mikula P, et al. A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection. Ecol Lett. 2021;24(3):477–86.

    Article 
    PubMed 

    Google Scholar 

  • Running SW, et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience. 2004;54:547–60.

    Article 

    Google Scholar 

  • Orne D, et al. The Caper package: comparative analysis of phyloge-netics and evolution in R. 2013.

  • Jetz W, et al. The global diversity of birds in space and time. Nature. 2012;491(7424):444–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lüdecke D, et al. performance: assessment of regression models performance. 2021: https://easystats.github.io/performance/

  • Bürkner PC. Brms: an R package for bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1–28.

    Article 

    Google Scholar 

  • Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tella JL, et al. Ecological, morphological and phylogenetic correlates of interspecific variation in plasma carotenoid concentration in birds. J Evol Biol. 2004;17(1):156–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andersson MB. Sexual selection. Princeton, N.J Baltimore, Md: Princeton University Press; 1994.

    Book 

    Google Scholar 

  • Maynard-Smith J, Harper D. Animal signals. Volume 166. Oxford: Oxford University Press; 2003.

    Book 

    Google Scholar 

  • Cardoso GC, Mota PG. Chapter seven – Evolution of song and colour across the Canary relatives. The canary: natural history, science and cultural significance. London, UK: Academic; 2024. pp. 163–97. L.R. Cardoso GC, Mota PG, Editor.

    Chapter 

    Google Scholar 

  • Badyaev AV, Hill GE. Avian sexual dichromatism in relation to phylogeny and ecology. Annu Rev Ecol Evol Syst. 2003;34:27–49.

    Article 

    Google Scholar 

  • Lande R. Genetic correlations between the sexes in the evolution of sexual dimorphism and mating preferences. In: Bradbury JW, Andersson M, editors. Sexual selection: testing the alternatives. New York: John Wiley & Sons; 1987. p. 83–94.

  • Gazda MA, et al. A genetic mechanism for sexual dichromatism in birds. Science. 2020;368(6496):1270–.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Norden KK, Price TD. Historical contingency and developmental constraints in avian coloration. Trends Ecol Evol. 2018;33(8):574–6.

    Article 
    PubMed 

    Google Scholar 

  • Clutton-Brock T. Sexual selection in males and females. Science. 2007;318(5858):1882–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tobias JA, Montgomerie R, Lyon BE. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Trans Royal Soc B-Biological Sci. 2012;367(1600):2274–93.

    Article 

    Google Scholar 

  • Doutrelant C, Fargevieille A, Grégoire A. Chapter Four – Evolution of female coloration: what have we learned from birds in general and blue Tits in particular. Adv Study Behavior52. 2020;52:123–202.

    Article 

    Google Scholar 

  • Trigo S, et al. Female ornamentation in European Serins is related to age but not to male mate choice and social competition. Behav Ecol Sociobiol. 2024;78(116).

  • Doutrelant C, et al. Female plumage coloration is sensitive to the cost of reproduction. An experiment in blue Tits. J Anim Ecol. 2011;81(1):87–96.

    Article 
    PubMed 

    Google Scholar 

  • Farine D, Sheldon B. Selection for territory acquisition is modulated by social network structure in a wild Songbird. J Evol Biol. 2015;28(3):547–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nolazco S, et al. Ornaments are equally informative in male and female birds. Nat Commun. 2022;13(1):5917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clutton-Brock T, Huchard E. Social competition and selection in males and females. Philos Trans R Soc Lond B Biol Sci. 2013;368(1631).

  • Gonzalez-Voyer A, et al. Evolution of acoustic and visual signals in Asian barbets. J Evol Biol. 2013;26(3):647–59.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eliason CM, et al. Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae). Elife. 2023;12.

  • Seddon N, et al. Sexual selection accelerates signal evolution during speciation in birds. Proc Biol Sci. 2013;280(1766):20131065.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Rodriguez L. Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays. 2009;31(10):1116–26.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Svensson PA, Wong BBM. Carotenoid-based signals in behavioural ecology: a review. Behaviour. 2011;148(2):131–89.

    Article 

    Google Scholar 

  • Trigo S, Mota PG. What is the value of a yellow patch? Assessing the signalling role of yellow colouration in the European Serin. Behav Ecol Sociobiol. 2015;69(3):481–90.

    Article 

    Google Scholar 

  • Espinosa CE, et al. Crown saturation and intrasexual dominance: evidence of a negatively correlated handicap in male saffron finches. Avian Res. 2025;16(2).

  • Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev. 2017;92(3):1459–74.

    Article 
    PubMed 

    Google Scholar 

  • Continue Reading