Capturing the spatial structure of the benthic microbiome under an intensive aquaculture scenario in Chilean Patagonia | BMC Microbiology

  • Verhoeven JTP, Salvo F, Knight R, Hamoutene D, Dufour SC. Temporal bacterial surveillance of salmon aquaculture sites indicates a long lasting benthic impact with minimal recovery. Front Microbiol. 2018;9:1–13.

    Google Scholar 

  • Miranda RM, Aguila-Torres P, Aranda CP, Maldonado J, Casado A. Taxonomy and diversity of bacterial communities associated with marine sediments from Chilean salmonid farms. Aquac Res. 2021;52:1605–20.

    Google Scholar 

  • Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.

    PubMed 

    Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2013;7:937–48.

    PubMed 

    Google Scholar 

  • Clay CG, Dunhill AM, Reimer JD, Beger M. Trait networks: assessing marine community resilience and extinction recovery. iScience. 2024;27:1–10.

    Google Scholar 

  • Keyes AA, McLaughlin JP, Barner AK, Dee LE. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat Commun. 2021;12:1–11.

    Google Scholar 

  • Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;14. https://doi.org/10.1038/nrmicro3417.

  • Rodríguez J, Gallampois CMJ, Haglund P, Timonen S, Rowe O. Bacterial communities as indicators of environmental pollution by POPs in marine sediments. Environ Pollut. 2021;268:1–11.

    Google Scholar 

  • Ko KKK, Chng KR, Nagarajan N. Metagenomics-enabled microbial surveillance. Nat Microbiol. 2022;7:486–96.

    PubMed 

    Google Scholar 

  • Urbina MA. Temporal variation on environmental variables and pollution indicators in marine sediments under sea salmon farming cages in protected and exposed zones in the Chilean inland Southern sea. Sci Total Environ. 2016;573:841–53.

    PubMed 

    Google Scholar 

  • Tomova A, Ivanova L, Buschmann AH, Rioseco ML, Kalsi RK, Godfrey HP, et al. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep. 2015;7:803–9.

    PubMed 

    Google Scholar 

  • Tucca F, Moya H, Pozo K, Borghini F, Focardi S, Barra R. Occurrence of antiparasitic pesticides in sediments near salmon farms in the Northern Chilean Patagonia. Mar Pollut Bull. 2017;115:465–8.

    PubMed 

    Google Scholar 

  • Billi M, Mascareño A, Henríquez PA, Rodríguez I, Padilla F, Ruz GA. Learning from crises? The long and winding road of the salmon industry in Chiloé Island, Chile. Mar Policy. 2022;140:1–16.

    Google Scholar 

  • Soto D, León-Muñoz J, Dresdner J, Luengo C, Tapia FJ, Garreaud R. Salmon farming vulnerability to climate change in Southern Chile: understanding the biophysical, socioeconomic and governance links. Rev Aquacult. 2019;11:354–74.

    Google Scholar 

  • Linford P, Pérez-Santos I, Montero P, Díaz PA, Aracena C, Pinilla E, et al. Oceanographic processes driving low-oxygen conditions inside Patagonian fjords. Biogeosciences. 2024;21:1433–59.

    Google Scholar 

  • Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis. 2016;16:e127-33.

    PubMed 

    Google Scholar 

  • Skliros D, Kostakou M, Kokkari C, Tsertou MI, Pavloudi C, Zafeiropoulos H, et al. Unveiling emerging opportunistic fish pathogens in aquaculture: A comprehensive seasonal study of microbial composition in mediterranean fish hatcheries. Microorganisms. 2024;12:1–22.

    Google Scholar 

  • Liu J, Meng Z, Liu X, Zhang XH. Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data. Mar Life Sci Technol. 2019;1(1):112–28.

    Google Scholar 

  • Ortiz P, Quiroga E, Montero P, Hamame M, Betti F. Trophic structure of benthic communities in a Chilean fjord (45°S) influenced by salmon aquaculture: insights from stable isotopic signatures. Mar Pollut Bull. 2021;173:1–9.

    Google Scholar 

  • Soto D, León-Muñoz J, Garreaud R, Quiñones RA, Morey F. Scientific warnings could help to reduce farmed salmon mortality due to harmful algal blooms. Mar Policy. 2021;132:1–5.

    Google Scholar 

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15:1917–42.

    PubMed 

    Google Scholar 

  • Kingsbury MV, Hamoutene D, Kraska P, Lacoursière-Roussel A, Page F, Coyle T, et al. Relationship between in feed drugs, antibiotics and organic enrichment in marine sediments at Canadian Atlantic salmon aquaculture sites. Mar Pollut Bull. 2023;188:1–17.

    Google Scholar 

  • Inostroza PA, Jessen GL, Li F, Zhang X, Brack W, Backhaus T. Multi-compartment impact of micropollutants and particularly antibiotics on bacterial communities using environmental DNA at river basin-level. Environ Pollut. 2025;366:1–10.

    Google Scholar 

  • Aminot Y, Sayfritz SJ, Thomas KV, Godinho L, Botteon E, Ferrari F, et al. Environmental risks associated with contaminants of legacy and emerging concern at European aquaculture areas. Environ Pollut. 2019;252:1301–10.

    PubMed 

    Google Scholar 

  • Veloso S, Amouroux D, Lanceleur L, Cagnon C, Monperrus M, Deborde J, et al. Keystone microbial taxa organize micropollutant-related modules shaping the microbial community structure in estuarine sediments. J Hazard Mater. 2023;448:1–13.

    Google Scholar 

  • Previšić A, Rožman M, Mor JR, Acuña V, Serra-Compte A, Petrović M, et al. Aquatic macroinvertebrates under stress: bioaccumulation of emerging contaminants and metabolomics implications. Sci Total Environ. 2020;704:1–12.

    Google Scholar 

  • Najafpour B, Pinto PIS, Sanz EC, Martinez-Blanch JF, Canario AVM, et al. Core Microbiome profiles and their modification by environmental, biological, and rearing factors in aquaculture hatcheries. Mar Pollut Bull. 2023;193:1–16.

    Google Scholar 

  • Klase G, Lee S, Liang S, Kim J, Zo YG, Lee J. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health. Sci Total Environ. 2019;649:1491–501.

    PubMed 

    Google Scholar 

  • Feng Y, Lu Y, Chen Y, Xu J, Jiang J. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. J Environ Manage. 2023;341:1–12.

    Google Scholar 

  • Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, et al. Global trends of benthic bacterial diversity and community composition along organic enrichment gradients of salmon farms. Front Microbiol. 2021;12:1–17.

    Google Scholar 

  • Almeida DB, Semedo M, Magalhães C, Blanquet I, Mucha AP. The network of nitrifying and pathogenic prokaryotic interactions in a recirculating aquaculture system of a sole (Solea senegalensis) hatchery. Front Mar Sci. 2022;9:1–11.

  • Ortiz-Severín J, Hodar C, Stuardo C, Aguado-Norese C, Maza F, González M, et al. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a Northern Patagonian area of Chile. Biol Res. 2024;57:1–19.

    Google Scholar 

  • Tamayo-Leiva J, Cifuentes-Anticevic J, Aparicio-Rizzo P, Arroyo JI, et al. Influence of estuarine water on the microbial community structure of Patagonian Fjords. Front Mar Sci. 2021;8:1–16.

    Google Scholar 

  • Hornick KM, Buschmann AH. Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites. Ann Microbiol. 2018;68:63–77.

    Google Scholar 

  • Pawlowski J, Bruce K, Aguirre KP. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. Sci Total Environ J. 2022;818:1–17.

    Google Scholar 

  • Inostroza PA, Soriano Y, Carmona E, Krauss M, et al. Preliminary dataset of emerging contaminants in surface water, bottom water, porewater, and sediment: urban and aquaculture impacts in Coliumo Bay and Caucahue channel in the central and Southern Coast of Chile. Data Br. 2024;55:1–10.

    Google Scholar 

  • Buschmann AH, Hernández-González MC, Aranda C, Chopin T, Neori A, Halling C, et al. In: Fath BD, editor. Mariculture waste Management. SE Jørgensen. Oxford: Encycl Ecol Elsevier; 2008. pp. 2211–7.

    Google Scholar 

  • Nilsen T, Pettersen R, Keeley NB, Ray JL, Majaneva S, et al. Association of microbial networks with the coastal seafloor macrofauna ecological state. Environ Sci Technol. 2025;59:7517–29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iriarte JL, Gonzlez HE, Nahuelhual L. Patagonian Fjord ecosystems in Southern Chile as a highly vulnerable region: problems and needs. Ambio. 2010;39:463–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Santos I, Díaz PA, Silva N, Garreaud R, Montero P, Henríquez-Castillo C, et al. Oceanography time series reveals annual asynchrony input between oceanic and estuarine waters in Patagonian Fjords. Sci Total Environ. 2021;798:1–18.

    Google Scholar 

  • Quiñones RA, Fuentes M, Montes RM, Soto D, León-Muñoz J. Environmental issues in Chilean salmon farming: a review. Rev Aquacult. 2019;11:375–402.

    Google Scholar 

  • Buschmann AH, Niklitschek EJ, Pereda SV. Aquaculture and its impacts on the conservation of Chilean patagonia. In: In Conservation in Chilean patagonia: assessing the state of Knowledge, Opportunities, and challenges. Cham: Springer International Publishing; 2023. p. 303–20.

    Google Scholar 

  • de Castro-Català N, Kuzmanovic M, Roig N, Sierra J, Ginebreda A, Barceló D, et al. Ecotoxicity of sediments in rivers: invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Sci Total Environ. 2016;540:297–306.

    PubMed 

    Google Scholar 

  • Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16:540–50.

    PubMed 

    Google Scholar 

  • Muyzer G, Waal ECDE, Uitierlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain Reaction-Amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

  • Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22.

    PubMed 

    Google Scholar 

  • Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.

    Google Scholar 

  • Ewels PA, Peltzer A, Fillinger S, Patel H, Johannes A, Andreas W, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:271–8.

    Google Scholar 

  • Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst HL, et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017;33:2580–2.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Google Scholar 

  • Lundin D, Andersson A. SBDI Sativa curated 16S GTDB database. SciLifeLab Data Repos. 2021. https://figshare.scilifelab.se/articles/dataset/SBDI_Sativa_curated_16S_GTDB_database/14869077

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wickham H. Elegant graphics for data analysis (2nd ed). 2017;77:3–5.

    Google Scholar 

  • McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanimirova I, Walczak B, Massart DL, Simeonov V. A comparison between two robust PCA algorithms. Chemom Intell Lab Syst. 2004;71:83–95.

    Google Scholar 

  • Rohart F, Gautier B, Singh A, Lê Cao K-A, mixOmics. An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:1–14.

    Google Scholar 

  • Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J, et al. A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:W180-8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18.

    Google Scholar 

  • Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.

    Google Scholar 

  • Röttjers L, Faust K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastian M, Heymann S. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;8:361–2.

    Google Scholar 

  • Gutiérrez MH, Galand PE, Moffat C. Melting glacier impacts community structure of bacteria, archaea and fungi in a Chilean Patagonia fjord. Environ Microbiol. 2015;17:3882–97.

    PubMed 

    Google Scholar 

  • Schneider W, Pérez-Santos I, Ross L, Bravo L, Seguel R, Hernández F. On the hydrography of Puyuhuapi Channel, Chilean Patagonia. Prog Oceanogr. 2014;129:8–18.

    Google Scholar 

  • Montero P, Gutiérrez MH, Daneri G, Jacob B. The effect of salmon Food-Derived DOM and glacial melting on activity and diversity of free-living bacterioplankton in Chilean Patagonian Fjords. Front Microbiol. 2022;12:1–21.

    Google Scholar 

  • Liu JJ, Diao ZH, Xu XR, Xie Q. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci Total Environ. 2019;666:894–901.

    PubMed 

    Google Scholar 

  • Stojan I, Šantić D, Villena-Alemany C, Trumbić Ž, Matić F, Vrdoljak Tomaš A, et al. Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic sea unravelled by unsupervised neural network. Environ Microbiome. 2024;19:1–20.

    Google Scholar 

  • Sipler RE, Kellogg CTE, Connelly TL, Roberts QN, et al. Microbial community response to terrestrially derived dissolved organic matter in the coastal Arctic. Front Microbiol. 2017;8:1–19.

    Google Scholar 

  • Gutiérrez MH, Narváez D, Daneri G, Montero P, Pérez-Santos I, Pantoja S. Linking seasonal reduction of microbial diversity to increase in winter temperature of waters of a Chilean patagonia fjord. Front Mar Sci. 2018;5:1–20.

    Google Scholar 

  • León-Muñoz J, Aguayo R, Corredor-Acosta A, Tapia FJ, Iriarte JL, Reid B, et al. Hydrographic shifts in coastal waters reflect climate-driven changes in hydrological regimes across Northwestern patagonia. Sci Rep. 2024;14:1–16.

    Google Scholar 

  • Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. J Veg Sci. 2010;21:796–801.

    Google Scholar 

  • Maturana-Martínez C, Fernández C, González HE, Galand PE. Different active microbial communities in two contrasted subantarctic fjords. Front Microbiol. 2021;12:1–14.

    Google Scholar 

  • Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Bacterial abundant taxa exhibit stronger environmental adaption than rare taxa in the Arctic Ocean sediments. Mar Environ Res. 2024;199:1–10.

    Google Scholar 

  • Choi A, Lee TK, Cho H, Lee WC, Hyun JH. Shifts in benthic bacterial communities associated with farming stages and a microbiological proxy for assessing sulfidic sediment conditions at fish farms. Mar Pollut Bull. 2022;178:1–13.

    Google Scholar 

  • Borer B, Ciccarese D, Johnson D, Or D. Spatial organization in microbial range expansion emerges from trophic dependencies and successful lineages. Commun Biol. 2020;3:1–10.

    Google Scholar 

  • Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus. 2023;13:1–11.

    Google Scholar 

  • Iriarte JL. Natural and human influences on marine processes in Patagonian subantarctic coastal waters. Front Mar Sci. 2018;5:1–7.

    Google Scholar 

  • Neu AT, Allen EE, Roy K. Defining and quantifying the core microbiome: challenges and prospects. Proc Natl Acad Sci U S A. 2021;118:1–10.

    Google Scholar 

  • Sun F, Wu M, Wang Y, Sun C, Xu Z. Diversity and potential function of bacterial communities in different upwelling systems. Estuar Coast Shelf Sci. 2020;237:106698.

    Google Scholar 

  • Ramos-Mendoza IS, Embarcadero-Jiménez S, Barrios-Navarro AF, et al. Prokaryotic community structure and predicted metabolism associated with hydrocarbon degradation in marine sediments from the Northwest Coast of Baja California, Mexico. J Soils Sediments. 2024;24:3148–66.

    Google Scholar 

  • Choi A, Cho H, Kim B, Kim HC, Jung RH, Lee WC, et al. Effects of finfish aquaculture on biogeochemistry and bacterial communities associated with sulfur cycles in highly sulfidic sediments. Aquacult Environ Interact. 2018;10:413–27.

    Google Scholar 

  • Hoffmann K, Bienhold C, Buttigieg PL, Knittel K, Laso-Pérez R, Rapp JZ, et al. Diversity and metabolism of woeseiales bacteria, global members of marine sediment communities. ISME J. 2020;14:1042–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Broman E, Sjöstedt J, Pinhassi J, Dopson M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome. 2017;5:96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davenport J. The marine ecology of the Laguna San Rafael (Southern Chile): ice scour and opportunism. Estuar Coast Shelf Sci. 1995;41:21–37.

    Google Scholar 

  • Martinez-Varela A, Casas G, Berrojalbiz N, Lundin D, Piña B, Dachs J, et al. Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal mediterranean and Antarctica. Environ Sci Pollut Res Int. 2023;30:119988–99.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vila-Costa M, Cerro-Gálvez E, Martínez-Varela A, Casas G, Dachs J. Anthropogenic dissolved organic carbon and marine microbiomes. ISME J. 2020;14:2646–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jessen GL, Lichtschlag A, Ramette A, Pantoja S, Rossel PE, Schubert CJ, et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci Adv. 2017;3:1–14.

    Google Scholar 

  • Molina V, Cornejo-D’Ottone M, Soto EH, Quiroga E, Alarcón G, Silva D, et al. Biogeochemical responses and seasonal dynamics of the benthic boundary layer microbial communities during the El Niño 2015 in an Eastern boundary upwelling system. Water. 2021;13:1–18.

    Google Scholar 

  • Zárate A, Dorador C, Valdés J, Molina V, Icaza G, Pacheco AS, et al. Benthic microbial diversity trends in response to heavy metals in an oxygen-deficient eutrophic Bay of the Humboldt current system offshore the Atacama desert. Environ Pollut. 2021;286:1–12.

    Google Scholar 

  • Feng Y, Hu J, Chen Y, Xu J, Yang B, Jiang J. Ecological effects of antibiotics on aquaculture ecosystems based on microbial community in sediments. Ocean Coast Manag. 2022;224:1–12.

    Google Scholar 

  • Aldeguer-Riquelme B, Rubio-Portillo E, Álvarez-Rogel J, Giménez-Casalduero F, Otero XL, Belando MD, et al. Factors structuring microbial communities in highly impacted coastal marine sediments (Mar Menor lagoon, SE Spain). Front Microbiol. 2022;13:1–18.

    Google Scholar 

  • Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, et al. Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia. Syst Appl Microbiol. 2022. https://doi.org/10.1016/j.syapm.2022.126359.

    Article 
    PubMed 

    Google Scholar 

  • Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ Microbiol Rep. 2019;11:487–94.

    PubMed 

    Google Scholar 

  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A. 2006;103:3846–51.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong X, Peng Y, Wang M, Woods L, Wu W, Wang Y, et al. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat Commun. 2023;14:1–13.

    Google Scholar 

  • Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL. A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol. 2013;65:1011–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fogarty C, Burgess CM, Cotter PD, Cabrera-Rubio R, Whyte P, Smyth C, et al. Diversity and composition of the gut microbiota of Atlantic salmon (Salmo salar) farmed in Irish waters. J Appl Microbiol. 2019;127:648–57.

    PubMed 

    Google Scholar 

  • Jurelevicius D, Cotta SR, Montezzi LF, Dias ACF, Mason OU, Picão RC, et al. Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity. Environ Pollut. 2021;268:1–12.

    Google Scholar 

  • Foysal MJ, Kawser AQMR, Paul SI, Chaklader MR, Gupta SK, Tay A, et al. Prevalence of opportunistic pathogens and anti-microbial resistance in urban aquaculture ponds. J Hazard Mater. 2024;474:1–12.

    Google Scholar 

  • Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9:2490–502.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang C, Liu Q, Li X, Wang M, Liu X, Yang J, et al. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific ocean. Sci Total Environ. 2021;759:1–14.

    Google Scholar 

  • von Hoyningen-Huene AJE, Schneider D, Fussmann D, Reimer A, Arp G, Daniel R. DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment Porewater dynamics on the Aldabra Atoll. Sci Rep. 2022;12:1–16.

    Google Scholar 

  • Petro C, Starnawski P, Schramm A, Kjeldsen KU. Microbial community assembly in marine sediments. Aquat Microb Ecol. 2017;79:177–95.

    Google Scholar 

  • Laroche O, Pochon X, Tremblay LA, Ellis JI, Lear G, Wood SA. Incorporating molecular-based functional and co-occurrence network properties into benthic marine impact assessments. FEMS Microbiol Ecol. 2018;94:1–12.

    Google Scholar 

  • Gomathinayagam S, Kanagalingam S, Chandrasekaran S, Krishnan T, Muthukaliannan GK. Millennial-scale microbiome analysis reveals ancient antimicrobial resistance conserved despite modern selection pressures. Environ Microbiome. 2024;19:1–12.

    Google Scholar 

  • Buschmann AH, Tomova A, López A, Maldonado MA, Henríquez LA, Ivanova L, et al. Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS ONE. 2012;7:26–8.

    Google Scholar 

  • Meyer JM, Leempoel K, Losapio G, Hadly EA. Molecular ecological network analyses: an effective conservation tool for the assessment of biodiversity, trophic interactions, and community structure. Front Ecol Evol. 2020;8:1–19.

    Google Scholar 

  • Dully V, Balliet H, Frühe L, Däumer M, Thielen A, Gallie S, et al. Robustness, sensitivity and reproducibility of eDNA metabarcoding as an environmental biomonitoring tool in coastal salmon aquaculture – An inter-laboratory study. Ecol Indic. 2021;121:1–15.

    Google Scholar 

  • Lozano-Muñoz I, Wacyk J, Kretschmer C, Vásquez-Martínez Y, Martin MCS. Antimicrobial resistance in Chilean marine-farmed salmon: improving food safety through one health. One Health. 2021. https://doi.org/10.1016/j.onehlt.2021.100219.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Luna D, Vela N, Alcalá FJ, Encina-Montoya F. The environmental impact assessment in aquaculture projects in Chile: a retrospective and prospective review considering cultural aspects. Sustain. 2021;13:1–19.

    Google Scholar 

  • Continue Reading