Viatte, S. & Raychaudhuri, S. Genetics of rheumatoid arthritis. in Rheumatology (ed. Hochberg MC, Gravallese EM, Smolen JS, van der Heijde D, Weinblatt ME, WEisman MH) 789–798 (Elsevier, 2022).
Firestein, G. S. Etiology of Rheumatoid Arthritis. in Firestein & Kelley’s Textbook of Rheumatology (ed. Firestein GS, Budd RC, Gabriel SE, Koretzky GA, Mclnnes IB, O’Dell JR) 1181–1199 (Elsevier, 2021).
Ghadiali, J., DiCarlo, E. F. & Scanzello, C. R. Pathogenesis and pathology of osteoarthritis. in Rheumatology (ed. Hochberg MC, Gravallese EM, Smolen JS, van der Heijde D, Weinblatt ME, WEisman MH) 1628–1644 (Elsevier, 2022).
Bloise, S., Cocchi, E., Mambelli, L., Radice, C. & Marchetti, F. Parvovirus B19 infection in children: A comprehensive review of clinical manifestations and management. Ital. J. Pediatr. 50, 261 (2024).
Google Scholar
Algwaiz, G. et al. Hematologic manifestations of parvovirus B19 infection. Hematol. Oncol. Stem Cell. Ther. 16, 316–322 (2023).
Google Scholar
de Silva, A., Cremaschi, R., Pinho, R. C. R., de Oliveira, J. R., Coelho, F. M. & J. B. & Guillain-Barré syndrome-the challenge of unrecognized triggers. Neurol. Sci. Off J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 40, 2403–2404 (2019).
Sharma, V. & Sharma, A. Infectious mimics of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 36, 101736 (2022).
Google Scholar
Badrinath, A., Gardere, A., Palermo, S. L., Campbell, K. S. & Kloc, A. Analysis of parvovirus B19 persistence and reactivation in human heart layers. Front. Virol. 4, 1304779 (2024).
Stahl, H. D., Pfeiffer, R., von Salis-Soglio, G. & Emmrich, F. Parvovirus B19-associated mono- and oligoarticular arthritis May evolve into a chronic inflammatory arthropathy fulfilling criteria for rheumatoid arthritis or spondyloarthropathy. Clin. Rheumatol. 19, 510–511 (2000).
Google Scholar
Tzang, C. C. et al. Clinical implications of human parvovirus B19 infection on autoimmunity and autoimmune diseases. Int. Immunopharmacol. 147, 113960 (2025).
Google Scholar
Arvia, R., Stincarelli, M. A., Manaresi, E., Gallinella, G. & Zakrzewska, K. Parvovirus B19 in rheumatic diseases. Microorganisms 12, 1708 (2024).
Google Scholar
Takahashi, Y., Murai, C., Ishii, T., Sugamura, K. & Sasaki, T. Human parvovirus B19 in rheumatoid arthritis. Int. Rev. Immunol. https://doi.org/10.3109/08830189809054408 (1998).
Google Scholar
Ray, N. B., Nieva, D. R. C., Seftor, E. A., Khalkhali-Ellis, Z. & Naides, S. J. Induction of an invasive phenotype by human parvovirus B19 in normal human synovial fibroblasts. Arthritis Rheum. 44, 1582–1586 (2001).
Google Scholar
Chen, Y. S. et al. Parvovirus B19 infection in patients with rheumatoid arthritis in Taiwan. J. Rheumatol. 33, 887–891 (2006).
Google Scholar
Peterlana, D. et al. The presence of parvovirus B19 VP and NS1 genes in the synovium is not correlated with rheumatoid arthritis. J Rheumatol (2003).
Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).
Google Scholar
Yamazaki, T., Yokoyama, T., Akatsu, H., Tukiyama, T. & Tokiwa, T. Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. Vitro Cell. Dev. Biol. Anim. 39, 337–339 (2003).
Google Scholar
Chang, J. H., Lee, K. J., Kim, S. K., Yoo, D. H. & Kang, T. Y. Validity of SW982 synovial cell line for studying the drugs against rheumatoid arthritis in fluvastatin-induced apoptosis. INDIAN J. MED. RES (2014).
Moffatt, S. et al. A cytotoxic nonstructural protein, NS1, of human parvovirus B19 induces activation of interleukin-6 gene expression. J. Virol. 70, 8485–8491 (1996).
Google Scholar
Mitchell, L. A. Parvovirus B19 nonstructural (NS1) protein as a transactivator of interleukin-6 synthesis: common pathway in inflammatory sequelae of human parvovirus infections? J. Med. Virol. 67, 267–274 (2002).
Google Scholar
Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).
Google Scholar
Pandolfi, F. et al. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 21, 5238 (2020).
Google Scholar
Raghav, S. K., Gupta, B., Agrawal, C., Chaturvedi, V. P. & Das, H. R. Expression of TNF-alpha and related signaling molecules in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Mediators Inflamm. 12682 (2006). (2006).
Chen, G. & Goeddel, D. V. TNF-R1 signaling: A beautiful pathway. Science 296, 1634–1635 (2002).
Google Scholar
Rao, Y. et al. Downregulation of BIRC2 hinders the progression of rheumatoid arthritis through regulating TRADD. Immun. Inflamm. Dis. 11, e978 (2023).
Google Scholar
Blüml, S., Scheinecker, C., Smolen, J. S. & Redlich, K. Targeting TNF receptors in rheumatoid arthritis. Int. Immunol. 24, 275–281 (2012).
Google Scholar
Shams, S. et al. The therapeutic landscape of rheumatoid arthritis: Current state and future directions. Front Pharmacol 12, (2021).
Zhou, J., Dai, Y., Lin, Y. & Chen, K. Association between serum amyloid A and rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum. 52, 151943 (2022).
Google Scholar
Targońska-Stępniak, B. & Majdan, M. Serum Amyloid A as a Marker of Persistent Inflammation and an Indicator of Cardiovascular and Renal Involvement in Patients with Rheumatoid Arthritis. Mediators Inflamm. 793628 (2014). (2014).
Nerlov, C. The C/EBP family of transcription factors: A paradigm for interaction between gene expression and proliferation control. Trends Cell. Biol. 17, 318–324 (2007).
Google Scholar
Hirata, M. et al. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum. Mol. Genet. 21, 1111–1123 (2012).
Google Scholar
Pope, R. M. et al. C/EBP beta in rheumatoid arthritis: Correlation with inflammation, not disease specificity. Clin. Immunol. Orlando Fla. 91, 271–282 (1999).
Google Scholar
Makarov, S. S. NF-kappaB in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3, 200–206 (2001).
Google Scholar
Zhang, T., Fan, J., Wen, X. & Duan, X. ECSIT: Biological function and involvement in diseases. Int. Immunopharmacol. 143, 113524 (2024).
Google Scholar
Yang, S. & Humphries, F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell. Biol. https://doi.org/10.1016/j.tcb.2024.09.003 (2024).
Google Scholar
Alcaraz, M. J. & Ferrándiz, M. L. Relevance of Nrf2 and Heme oxygenase-1 in articular diseases. Free Radic Biol. Med. 157, 83–93 (2020).
Google Scholar
Kitamura, A. et al. Increased level of Heme oxygenase-1 in rheumatoid arthritis synovial fluid. Mod. Rheumatol. 21, 150–157 (2011).
Google Scholar
Kobayashi, H. et al. Regulatory role of Heme Oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis Rheum. 54, 1132–1142 (2006).
Google Scholar
Behl, T. et al. Ubiquitination in rheumatoid arthritis. Life Sci. 261, 118459 (2020).
Google Scholar
Backman, J. T., Siegle, I., Zanger, U. M. & Fritz, P. Immunohistochemical detection of microsomal epoxide hydrolase in human synovial tissue. Histochem. J. 31, 645–649 (1999).
Google Scholar
Gautheron, J. & Jéru, I. The multifaceted role of epoxide hydrolases in human health and disease. Int. J. Mol. Sci. 22, 13 (2021).
Google Scholar
Pu, Y. et al. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin. Immunol. Orlando Fla. 257, 109850 (2023).
Google Scholar
Zhang, H. et al. Elevated serum Cyclophilin B levels are associated with the prevalence and severity of metabolic syndrome. Front. Endocrinol. 8, 360 (2017).
Google Scholar
Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).
Google Scholar
Bukrinsky, M. Extracellular cyclophilins in health and disease. Biochim. Biophys. Acta. 1850, 2087–2095 (2015).
Google Scholar
Zhao, H., Tang, C., Wang, M., Zhao, H. & Zhu, Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front. Immunol. 14, 1260839 (2023).
Google Scholar
Long, L. et al. Advancement in Understanding the role of ferroptosis in rheumatoid arthritis. Front. Physiol. 13, 1036515 (2022).
Google Scholar
Ling, H. et al. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatol. Oxf. Engl. 61, 4521–4534 (2022).
Google Scholar
Karonitsch, T. et al. A2.6 MTOR plays a decisive role in the mesenchymal tissue response to inflammation in arthritis. Ann. Rheum. Dis. 74, A18–A18 (2015).
Laragione, T. & Gulko, P. S. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol. Med. Camb. Mass. 16, 352–358 (2010).
Google Scholar
Zhang, F., Cheng, T. & Zhang, S. X. Mechanistic target of Rapamycin (mTOR): A potential new therapeutic target for rheumatoid arthritis. Arthritis Res. Ther. 25, 187 (2023).
Google Scholar
Isomäki, P. et al. The expression of SOCS is altered in rheumatoid arthritis. Rheumatol. Oxf. Engl. 46, 1538–1546 (2007).
Chan, H. C. et al. Increased expression of suppressor of cytokine signaling 1 mRNA in patients with rheumatoid arthritis. Kaohsiung J. Med. Sci. 26, 290–298 (2010).
Google Scholar
Kasperkovitz, P. et al. Activation of the STAT1 pathway in rheumatoid arthritis. Ann. Rheum. Dis. 63, 233–239 (2004).
Google Scholar
Sharma, V. et al. Decreased levels of STAT1 and Interferon-γ–Induced STAT1 phosphorylation in rheumatoid arthritis CD4 and CD8 T cells. ACR Open. Rheumatol. 3, 277–283 (2021).
Google Scholar
Ptacek, J. et al. Diminished cytokine-induced jak/stat signaling is associated with rheumatoid arthritis and disease activity. PLOS ONE. 16, e0244187 (2021).
Google Scholar
Haller, O., Kochs, G., Weber, F. & Interferon Mx, and viral countermeasures. Cytokine Growth Factor. Rev. 18, 425–433 (2007).
Google Scholar
He, P. et al. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol. Med. Rep. 14, 1587–1593 (2016).
Google Scholar
Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).
Google Scholar