Parvovirus B19 NS1 protein induces synovitis mimicking rheumatoid arthritis

  • Viatte, S. & Raychaudhuri, S. Genetics of rheumatoid arthritis. in Rheumatology (ed. Hochberg MC, Gravallese EM, Smolen JS, van der Heijde D, Weinblatt ME, WEisman MH) 789–798 (Elsevier, 2022).

  • Firestein, G. S. Etiology of Rheumatoid Arthritis. in Firestein & Kelley’s Textbook of Rheumatology (ed. Firestein GS, Budd RC, Gabriel SE, Koretzky GA, Mclnnes IB, O’Dell JR) 1181–1199 (Elsevier, 2021).

  • Ghadiali, J., DiCarlo, E. F. & Scanzello, C. R. Pathogenesis and pathology of osteoarthritis. in Rheumatology (ed. Hochberg MC, Gravallese EM, Smolen JS, van der Heijde D, Weinblatt ME, WEisman MH) 1628–1644 (Elsevier, 2022).

  • Bloise, S., Cocchi, E., Mambelli, L., Radice, C. & Marchetti, F. Parvovirus B19 infection in children: A comprehensive review of clinical manifestations and management. Ital. J. Pediatr. 50, 261 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Algwaiz, G. et al. Hematologic manifestations of parvovirus B19 infection. Hematol. Oncol. Stem Cell. Ther. 16, 316–322 (2023).

    PubMed 

    Google Scholar 

  • de Silva, A., Cremaschi, R., Pinho, R. C. R., de Oliveira, J. R., Coelho, F. M. & J. B. & Guillain-Barré syndrome-the challenge of unrecognized triggers. Neurol. Sci. Off J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 40, 2403–2404 (2019).

    Google Scholar 

  • Sharma, V. & Sharma, A. Infectious mimics of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 36, 101736 (2022).

    PubMed 

    Google Scholar 

  • Badrinath, A., Gardere, A., Palermo, S. L., Campbell, K. S. & Kloc, A. Analysis of parvovirus B19 persistence and reactivation in human heart layers. Front. Virol. 4, 1304779 (2024).

    Google Scholar 

  • Stahl, H. D., Pfeiffer, R., von Salis-Soglio, G. & Emmrich, F. Parvovirus B19-associated mono- and oligoarticular arthritis May evolve into a chronic inflammatory arthropathy fulfilling criteria for rheumatoid arthritis or spondyloarthropathy. Clin. Rheumatol. 19, 510–511 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Tzang, C. C. et al. Clinical implications of human parvovirus B19 infection on autoimmunity and autoimmune diseases. Int. Immunopharmacol. 147, 113960 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Arvia, R., Stincarelli, M. A., Manaresi, E., Gallinella, G. & Zakrzewska, K. Parvovirus B19 in rheumatic diseases. Microorganisms 12, 1708 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, Y., Murai, C., Ishii, T., Sugamura, K. & Sasaki, T. Human parvovirus B19 in rheumatoid arthritis. Int. Rev. Immunol. https://doi.org/10.3109/08830189809054408 (1998).

    PubMed 

    Google Scholar 

  • Ray, N. B., Nieva, D. R. C., Seftor, E. A., Khalkhali-Ellis, Z. & Naides, S. J. Induction of an invasive phenotype by human parvovirus B19 in normal human synovial fibroblasts. Arthritis Rheum. 44, 1582–1586 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. S. et al. Parvovirus B19 infection in patients with rheumatoid arthritis in Taiwan. J. Rheumatol. 33, 887–891 (2006).

    PubMed 

    Google Scholar 

  • Peterlana, D. et al. The presence of parvovirus B19 VP and NS1 genes in the synovium is not correlated with rheumatoid arthritis. J Rheumatol (2003).

  • Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).

    PubMed 

    Google Scholar 

  • Yamazaki, T., Yokoyama, T., Akatsu, H., Tukiyama, T. & Tokiwa, T. Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. Vitro Cell. Dev. Biol. Anim. 39, 337–339 (2003).

    CAS 

    Google Scholar 

  • Chang, J. H., Lee, K. J., Kim, S. K., Yoo, D. H. & Kang, T. Y. Validity of SW982 synovial cell line for studying the drugs against rheumatoid arthritis in fluvastatin-induced apoptosis. INDIAN J. MED. RES (2014).

  • Moffatt, S. et al. A cytotoxic nonstructural protein, NS1, of human parvovirus B19 induces activation of interleukin-6 gene expression. J. Virol. 70, 8485–8491 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, L. A. Parvovirus B19 nonstructural (NS1) protein as a transactivator of interleukin-6 synthesis: common pathway in inflammatory sequelae of human parvovirus infections? J. Med. Virol. 67, 267–274 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandolfi, F. et al. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 21, 5238 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raghav, S. K., Gupta, B., Agrawal, C., Chaturvedi, V. P. & Das, H. R. Expression of TNF-alpha and related signaling molecules in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Mediators Inflamm. 12682 (2006). (2006).

  • Chen, G. & Goeddel, D. V. TNF-R1 signaling: A beautiful pathway. Science 296, 1634–1635 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rao, Y. et al. Downregulation of BIRC2 hinders the progression of rheumatoid arthritis through regulating TRADD. Immun. Inflamm. Dis. 11, e978 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blüml, S., Scheinecker, C., Smolen, J. S. & Redlich, K. Targeting TNF receptors in rheumatoid arthritis. Int. Immunol. 24, 275–281 (2012).

    PubMed 

    Google Scholar 

  • Shams, S. et al. The therapeutic landscape of rheumatoid arthritis: Current state and future directions. Front Pharmacol 12, (2021).

  • Zhou, J., Dai, Y., Lin, Y. & Chen, K. Association between serum amyloid A and rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum. 52, 151943 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Targońska-Stępniak, B. & Majdan, M. Serum Amyloid A as a Marker of Persistent Inflammation and an Indicator of Cardiovascular and Renal Involvement in Patients with Rheumatoid Arthritis. Mediators Inflamm. 793628 (2014). (2014).

  • Nerlov, C. The C/EBP family of transcription factors: A paradigm for interaction between gene expression and proliferation control. Trends Cell. Biol. 17, 318–324 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hirata, M. et al. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum. Mol. Genet. 21, 1111–1123 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Pope, R. M. et al. C/EBP beta in rheumatoid arthritis: Correlation with inflammation, not disease specificity. Clin. Immunol. Orlando Fla. 91, 271–282 (1999).

    CAS 

    Google Scholar 

  • Makarov, S. S. NF-kappaB in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3, 200–206 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T., Fan, J., Wen, X. & Duan, X. ECSIT: Biological function and involvement in diseases. Int. Immunopharmacol. 143, 113524 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, S. & Humphries, F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell. Biol. https://doi.org/10.1016/j.tcb.2024.09.003 (2024).

    PubMed 

    Google Scholar 

  • Alcaraz, M. J. & Ferrándiz, M. L. Relevance of Nrf2 and Heme oxygenase-1 in articular diseases. Free Radic Biol. Med. 157, 83–93 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kitamura, A. et al. Increased level of Heme oxygenase-1 in rheumatoid arthritis synovial fluid. Mod. Rheumatol. 21, 150–157 (2011).

    PubMed 

    Google Scholar 

  • Kobayashi, H. et al. Regulatory role of Heme Oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis Rheum. 54, 1132–1142 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Behl, T. et al. Ubiquitination in rheumatoid arthritis. Life Sci. 261, 118459 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Backman, J. T., Siegle, I., Zanger, U. M. & Fritz, P. Immunohistochemical detection of microsomal epoxide hydrolase in human synovial tissue. Histochem. J. 31, 645–649 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Gautheron, J. & Jéru, I. The multifaceted role of epoxide hydrolases in human health and disease. Int. J. Mol. Sci. 22, 13 (2021).

    CAS 

    Google Scholar 

  • Pu, Y. et al. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin. Immunol. Orlando Fla. 257, 109850 (2023).

    CAS 

    Google Scholar 

  • Zhang, H. et al. Elevated serum Cyclophilin B levels are associated with the prevalence and severity of metabolic syndrome. Front. Endocrinol. 8, 360 (2017).

    ADS 

    Google Scholar 

  • Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bukrinsky, M. Extracellular cyclophilins in health and disease. Biochim. Biophys. Acta. 1850, 2087–2095 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, H., Tang, C., Wang, M., Zhao, H. & Zhu, Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front. Immunol. 14, 1260839 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, L. et al. Advancement in Understanding the role of ferroptosis in rheumatoid arthritis. Front. Physiol. 13, 1036515 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ling, H. et al. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatol. Oxf. Engl. 61, 4521–4534 (2022).

    CAS 

    Google Scholar 

  • Karonitsch, T. et al. A2.6 MTOR plays a decisive role in the mesenchymal tissue response to inflammation in arthritis. Ann. Rheum. Dis. 74, A18–A18 (2015).

    Google Scholar 

  • Laragione, T. & Gulko, P. S. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol. Med. Camb. Mass. 16, 352–358 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F., Cheng, T. & Zhang, S. X. Mechanistic target of Rapamycin (mTOR): A potential new therapeutic target for rheumatoid arthritis. Arthritis Res. Ther. 25, 187 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isomäki, P. et al. The expression of SOCS is altered in rheumatoid arthritis. Rheumatol. Oxf. Engl. 46, 1538–1546 (2007).

    Google Scholar 

  • Chan, H. C. et al. Increased expression of suppressor of cytokine signaling 1 mRNA in patients with rheumatoid arthritis. Kaohsiung J. Med. Sci. 26, 290–298 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasperkovitz, P. et al. Activation of the STAT1 pathway in rheumatoid arthritis. Ann. Rheum. Dis. 63, 233–239 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, V. et al. Decreased levels of STAT1 and Interferon-γ–Induced STAT1 phosphorylation in rheumatoid arthritis CD4 and CD8 T cells. ACR Open. Rheumatol. 3, 277–283 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ptacek, J. et al. Diminished cytokine-induced jak/stat signaling is associated with rheumatoid arthritis and disease activity. PLOS ONE. 16, e0244187 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haller, O., Kochs, G., Weber, F. & Interferon Mx, and viral countermeasures. Cytokine Growth Factor. Rev. 18, 425–433 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, P. et al. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol. Med. Rep. 14, 1587–1593 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading