Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun. 2020;11(1):988. https://doi.org/10.1038/s41467-020-14746-7.
Google Scholar
Guo W, Guo X, Xu L, Shao L, Zhu B, Liu H, et al. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal. 2022;16(7):100576. https://doi.org/10.1016/j.animal.2022.100576.
Google Scholar
Zhang H, Wu J, Zhao X, Yan P, Yang R, Yan J, et al. Improving aerobic stability and methane production of maize stover silage with lactic acid bacteria inoculants: focus on pentose-fermentation. IND CROP PROD. 2023;201:116861. https://doi.org/10.1016/j.indcrop.2023.116861.
Google Scholar
Tahir M, Wang T, Zhang J, Xia T, Deng X, Cao X, Zhong J. Compound lactic acid bacteria enhance the aerobic stability of Sesbania Cannabina and maize mixed silage. BMC Microbiol. 2025;25(1):68. https://doi.org/10.1186/s12866-025-03781-3.
Google Scholar
Xin Y, Chen C, Zhong Y, Bu X, Huang S, Tahir M, Du Z, Liu W, Yang W, Li J, Wu Y, Zhang Z, Lian J, Xiao Q, Yan Y. Effect of storage time on the silage quality and microbial community of mixed maize and Faba bean in the Qinghai-Tibet plateau. Front Microbiol. 2023;13:1090401. https://doi.org/10.3389/fmicb.2023.1161337.
Google Scholar
Liao C, Na B, Tang X, Zhao M, Zhang C, Chen S, et al. Contribution of the bacterial community of poorly fermented oat silage to biogas emissions on the Qinghai Tibetan plateau. Sci Total Environ. 2023;897:165336. https://doi.org/10.1016/j.scitotenv.2023.165336.
Google Scholar
Li F, Jia M, Chen H, Chen M, Su R, Usman S, Ding Z, Hao L, Franco M, Guo X. Responses of microbial community composition and cazymes encoding gene enrichment in ensiled Elymus nutans to altitudinal gradients in alpine region. Appl Environ Microbiol. 2024;90(10):e0098624. https://doi.org/10.1128/aem.00986-24.
Google Scholar
Jatkauskas J, Vrotniakiene V, Eisner I, Witt KL, do Amaral RC. Comparison of the chemical and microbial composition and aerobic stability of high-moisture barley grain ensiled with either chemical or viable lactic acid bacteria application. Fermentation. 2024;10:62. https://doi.org/10.3390/fermentation10010062.
Google Scholar
Chen L, Bai S, You M, Xiao B, Li P, Cai Y. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Anim Feed Sci Technol. 2020;269:114669. https://doi.org/10.1016/j.anifeedsci.2020.114669.
Google Scholar
Wang X, Han X, Wang H, Jing X, Liu C, Zhou Y. Studying progress of Lactobacillus’s responses in a variety of stress. Sci Technol Food Ind. 2015;6:365–9.
Wang S, Dong Z, Li J, Chen L, Shao T. Pediococcus acidilactici strains as silage inoculants for improving the fermentation quality, nutritive value and in vitro ruminal digestibility in different forages. J Appl Microbiol. 2018;126:1–10. https://doi.org/10.1111/jam.14146.
Google Scholar
Liu H, Zeng T, Zhang Y, Wen X, Liu H, Zhang L, Xiao O, Li X, Yan Y. Screening and identification of low temperature resistant lactic acid bacteria and its effect on fermentation quality of oat silage. Pratacultural Sci. 2025;42(3):669–78. https://doi.org/10.11829/j.issn.1001-0629.2023-0688.
Google Scholar
Chen C, Xin Y, Li X, Ni H, Zeng T, Du Z, et al. Effects of acremonium cellulase and heat-resistant lactic acid bacteria on lignocellulose degradation, fermentation quality, and microbial community structure of hybrid elephant grass silage in humid and hot areas. Front Microbiol. 2022;13:1066753. https://doi.org/10.3389/fmicb.2022.1066753.
Google Scholar
Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci. 1980;63:64–75. https://doi.org/10.3168/jds.s0022-0302(80)82888-8.
Google Scholar
Murphy RP. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J Sci Food Agric. 1958;9:714–7. https://doi.org/10.1029/2001JB000884.
Google Scholar
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–97. https://doi.org/10.3168/jds.s0022-0302(91)78551-2.
Google Scholar
AOAC. Official methods of analysis. J Pharm Sci. 1975;60:414–5. https://doi.org/10.1002/jps.2600600253.
Google Scholar
Zhu L, Zhao M, Yan Y, Sun P, Yan X, Liu M, Na R, Jia Y, Cha S, Ge G. Characteristics of isolated lactic acid bacteria at low temperature and their effects on the silage quality. Microbiol Spectr. 2025;6:e0319424. https://doi.org/10.1128/spectrum.03194-24.
Google Scholar
Ren H, Shi R, Yang D, Tian H, Wang L, Ling Z, et al. Innovative strategy to enhance bioconversion of sweet sorghum Bagasse (SSB) by the combination of bio-fortified ensiling and dilute alkali pretreatment. Ind Crop Prod. 2024;211:118208. https://doi.org/10.1016/j.indcrop.2024.118208.
Google Scholar
Gaspar P, Neves AR, Shearman CA, Gasson MJ, Baptista AM, Turner DL, et al. The lactate dehydrogenases encoded by the Ldh and LdhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties – comparative modeling to probe the molecular basis. FEBS J. 2007;274(22):5924–36. https://doi.org/10.1111/j.1742-4658.2007.06115.x.
Google Scholar
Yang Y, Bao C, Li K, Pan Y, Wang X, Fang G, Chen H, Zhang S, Chen G, Gang W. Identification, low temperature growth characteristics and tolerance mechanism of low temperature-resistant strain. China Brew. 2022;41(5):47–51. https://doi.org/10.11882/j.issn.0254-5071.2022.05.009.
Google Scholar
Bernardes T, Daniel J, Adesogan T, McAllister A, Nussio D. Silage review: unique challenges of silages made in hot and cold regions. J Dairy Sci. 2018;101:4001–19. https://doi.org/10.3168/jds.2017-13703.
Google Scholar
Liu X, Yu X, He J, Guo J, Wang P, Wang Z. Interactions between nine probiotics and mechanisms of cooperative symbiosis. Food Ferment Ind. 2019;45(13):65–70. https://doi.org/10.13995/j.cnki.11-1802/ts.019868.
Google Scholar
Kleinschmit DH Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J Dairy Sci. 2006;89(10):4005–13. https://doi.org/10.3168/jds.S0022-0302(06)72444-4.
Google Scholar
Yin X, Zhao J, Wang S, Dong Z, Li J, Shao T. The effects of epiphytic microbiota and chemical composition of Italian ryegrass harvested at different growth stages on silage fermentation. J Sci Food Agric. 2023;103(3):1385–93. https://doi.org/10.1002/jsfa.12232.
Google Scholar
You L, Bao W, Yao C, Zhao F, Jin H, Huang W, Li B, Kwok L, Liu W. Changes in chemical composition, structural and functional Microbiome during alfalfa (Medicago sativa) ensilage with Lactobacillus plantarum PS-8. Anim Nutr. 2022;24:100–9. https://doi.org/10.1016/j.aninu.2021.12.004.
Google Scholar
Yang S, Xing Y, Gao J, Jin R, Lin R, Weng W, et al. Lacticaseibacillus paracasei fermentation broth identified peptide, Y2Fr, and its antibacterial activity on vibrio parahaemolyticus. Microb Pathog. 2023;182:106260. https://doi.org/10.1016/j.micpath.2023.106260.
Google Scholar
Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, et al. Ensiling as pretreatment of rice straw: the effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol. 2018;266:158–65. https://doi.org/10.1016/j.biortech.2018.06.058.
Google Scholar
Cheng X, Huang L, Li K. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol. 2019;35(5):68. https://doi.org/10.1007/s11274-019-2645-6.
Google Scholar
Li F, Ding Z, Ke W, Xu D, Zhang P, Bai J, et al. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of maize stalk silage at two different temperatures: ensiling characteristics, carbohydrates composition, and enzymatic saccharification. Bioresour Technol. 2019;282:211–21. https://doi.org/10.1016/j.biortech.2019.03.022.
Google Scholar
Gong M, Wang Y, Bao D, Jiang S, Chen H, Shang J, Wang X, Hnin Y, Zou G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling. Bioresour Technol. 2023;376:128888. https://doi.org/10.1016/j.biortech.2023.128888.
Google Scholar
Santos MAB, Morais F, Mandelli EA, Lima RY, Miyamoto PMR, Higasl EAA, Araujo DAA, Paixao JMJ, Motta ML, Streit RSA, Morao LG, Silva CBC, Wolf CRF, Terrasan NR, Bulka JA, Diogo FJ, Fuzita FM, Colombar CR, Santos PT, Rodrigues DB, Silva SG, Bernardes N, Terrapon V, Lombard AJC, Henrissat B, Bissaro MJGB, Persinoti GF, Berrin MT. A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion. Nature. 2025;639:1076–83. https://doi.org/10.1038/s41586-024-08553-z.
Google Scholar
Weissbach F, Kuhla S, Schmidt L. Estimation of the metabolizable energy in forages by a cellulase-method. Proc Soc Nutr Physiol. 1996;5:11–25. https://doi.org/10.2134/1994.foragequality.c16.
Google Scholar
Zong C, Xiao Y, Shao T, Chiou AJ, Wu A, Huang Z, Chen C, Jiang W, Zhu J, Dong Z, Liu Q, Li M. Alfalfa as a vegetable source of β-carotene: the change mechanism of β-carotene during fermentation. Food Res Int. 2023;172:113104. https://doi.org/10.1016/j.foodres.2023.113104.
Google Scholar
Ferrero F, Tabacco E, Piano S, Casale M, Borreani G. Temperature during conservation in laboratory silos affects fermentation profile and aerobic stability of corn silage treated with Lactobacillus buchneri, Lactobacillus hilgardii, and their combination. J Dairy Sci. 2021;104(2):1696–713. https://doi.org/10.3168/jds.2020-18733.
Google Scholar
Bai J, Ding Z, Su R, Wang M, Cheng M, Xie D, Guo X. Storage temperature is more effective than lactic acid bacteria inoculations in manipulating fermentation and bacterial community diversity, co-occurrence and functionality of the whole-plant maize silage. Microbiol Spectr. 2022;10:e00101–22. https://doi.org/10.1128/spectrum.00101-22.
Google Scholar
Li M, Fan X, Cheng Q, Chen Y, Long J, Lei Y, et al. Effect of Amomum villosum essential oil as an additive on the chemical composition, fermentation quality, and bacterial community of paper mulberry silage. Front Microbiol. 2022;13:951958. https://doi.org/10.3389/fmicb.2022.951958.
Google Scholar
Ogunade IM, Jiang Y, Cervantes AAP, Kim DH, Oliveira AS, Vyas D, Weinberg ZG, Jeong KC, Adesogan AT. Bacterial diversity and composition of alfalfa silage as analyzed by illumina miseq sequencing: effects of Escherichia coli O157:H7 and silage additives. J Dairy Sci. 2017;101:2048–59. https://doi.org/10.3168/jds.2017-12876.
Google Scholar
Zong C, Wu Q, Wu A, Chen S, Dong D, Zhao J, et al. Exploring the diversity mechanism of fatty acids and the loss mechanisms of polyunsaturated fatty acids and fat-soluble vitamins in alfalfa silage using different additives. Anim Feed Sci Technol. 2021;280:115044. https://doi.org/10.1016/j.anifeedsci.2021.115044.
Google Scholar
Li L, Zhang H, Meng D, Yin H. Transcriptomics of Lactobacillus paracasei: metabolism patterns and cellular responses under high-density culture conditions. Front Bioeng Biotechnol. 2023;11:1274020. https://doi.org/10.3389/fbioe.2023.1274020.
Google Scholar
Shen S, Choi O, Park SH, Kim CG, Park CS. Root colonizing and biocontrol competency of Serratia plymuthica A21-4 against phytophthora blight of pepper. Plant Pathol J. 2005;21:64–7. https://doi.org/10.5423/PPJ.2005.21.1.064.
Google Scholar
Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: future antibiotics candidates. Bioorg Chem. 2020;101:103922. https://doi.org/10.3390/fermentation8040158.
Google Scholar
Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals xylella as a variant lineage of plant-associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics. 2021;113:3989–4003. https://doi.org/10.1016/j.ygeno.2021.09.021.
Google Scholar
Zeng T, Li X, Guan H, Yang W, Yan Y. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour Technol. 2020;123655. https://doi.org/10.1016/j.biortech.2020.123655.
Google Scholar
Du Z, Lin Y, Sun L, Yang F, Cai Y. Microbial community structure, co-occurrence network and fermentation characteristics of Woody plant silage. J Sci Food Agric. 2021;102:193–1204. https://doi.org/10.1002/jsfa.11457.
Google Scholar
Kleerebezem M, Bachmann H, van PeltKleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev. 2020;24:804–20. https://doi.org/10.1093/femsre/fuaa033.
Google Scholar
Zhou J, Huo T, Sun J, Feng Y, Pan J, Zhao Y, et al. Response of amino acid metabolism to decreased temperatures in anammox consortia: strong, efficient and flexible. Bioresour Technol. 2022;352:127099. https://doi.org/10.1016/j.biortech.2022.127099.
Google Scholar
Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–71. https://doi.org/10.1038/s42255-020-0243-4.
Google Scholar
McDonald P, Henderson AR, Heron SJJW. The biochemistry of silage. 2nd ed. Chalcombe; 1992. p. 145–50. https://doi.org/10.1017/S0014479700023115.
Google Scholar
