Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17:273–84.
Google Scholar
Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018;18:423–37.
Google Scholar
Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20:919–26.
Google Scholar
Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA. Circadian clock proteins and immunity. Immunity. 2014;40:178–86.
Google Scholar
Borrmann H, McKeating JA, Zhuang X. The circadian clock and viral infections. J Biol Rhythms. 2021;36:9–22.
Google Scholar
Westwood ML, O’Donnell AJ, Bekker Cd, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol. 2019;3:552–60.
Google Scholar
Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian N. The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep. 2017;7:10892.
Google Scholar
O’Donnell AJ, Schneider P, McWatters HG, Reece SE. Fitness costs of disrupting circadian rhythms in malaria parasites. Proc Biol Sci. 2011;278:2429–36.
Google Scholar
Prior KF, van der Veen DR, O’Donnell AJ, Cumnock K, Schneider D, Pain A, et al. Timing of host feeding drives rhythms in parasite replication. PLoS Pathog. 2018;14:e1006900.
Google Scholar
Hirako IC, Assis PA, Hojo-Souza NS, Reed G, Nakaya H, Golenbock DT, et al. Daily rhythms of TNFα expression and food intake regulate synchrony of Plasmodium stages with the host circadian cycle. Cell Host Microbe. 2018;23:796–808.
Google Scholar
Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, et al. Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci USA. 2013;110:9897–902.
Google Scholar
Lundy SR, Ahmad T, Simoneaux T, Benyeogor I, Robinson Y, George Z, et al. Effect of time of day of infection on Chlamydia infectivity and pathogenesis. Sci Rep. 2019;9:11405.
Google Scholar
Gagnidze K, Hajdarovic KH, Moskalenko M, Karatsoreos IN, McEwen BS, Bulloch K. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc Natl Acad Sci USA. 2016;113:5730–5.
Google Scholar
Lee JE, Edery I. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr Biol. 2008;18:195–9.
Google Scholar
Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O’Neill JS, et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci USA. 2016;113:10085–90.
Google Scholar
Matsuzawa T, Nakamura Y, Ogawa Y, Ishimaru K, Goshima F, Shimada S, et al. Differential day-night outcome to HSV-2 cutaneous infection. J Invest Dermatol. 2018;138:233–6.
Google Scholar
Rees H, Rzechorzek NM, Dodd AN, Hodge JJL, Stevenson TJ, Mv S, et al. BioClocksUK: driving robust cycles of discovery to impact. Philos Trans R Soc B Biol Sci. 2025;380:20230345.
Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014;13:125.
Google Scholar
Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–9.
Google Scholar
Sangbakembi-Ngounou C, Costantini C, Longo-Pendy NM, Ngoagouni C, Akone-Ella O, Rahola N, et al. Diurnal biting of malaria mosquitoes in the Central African Republic indicates residual transmission may be “out of control.” Proc Natl Acad Sci USA. 2022;119:e2104282119.
Google Scholar
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci USA. 2019;116:15086–95.
Google Scholar
Hawking F, Worms MJ, Gammage K. 24- and 48-hour cycles of malaria parasites in the blood; their purpose, production and control. Trans R Soc Trop Med Hyg. 1968;62:731–65.
Google Scholar
Schneider P, Rund SSC, Smith NL, Prior KF, O’Donnell AJ, Reece SE. Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes. Proc Biol Sci. 2018;285:20181876.
Google Scholar
Habtewold T, Tapanelli S, Masters EKG, Windbichler N, Christophides GK. The circadian clock modulates Anopheles gambiae infection with Plasmodium falciparum. PLoS ONE. 2022;17:e0278484.
Google Scholar
Pigeault R, Caudron Q, Nicot A, Rivero A, Gandon S. Timing malaria transmission with mosquito fluctuations. Evol Lett. 2018;2:378–89.
Google Scholar
Bento I, Parrington B, Pascual R, Goldberg AS, Wang E, Liu H, et al. Parasite and vector circadian clocks mediate efficient malaria transmission. Nat Microbiol. 2025;10:882–96.
Google Scholar
Ezema CA, Okagu IU, Ezeorba TPC. Escaping the enemy’s bullets: an update on how malaria parasites evade host immune response. Parasitol Res. 2023;122:1715–31.
Google Scholar
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA. 2014;111:16219–24.
Google Scholar
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291:490–3.
Google Scholar
O’Donnell AJ, Prior KF, Reece SE. Host circadian clocks do not set the schedule for the within-host replication of malaria parasites. Proc Biol Sci. 2020;287:20200347.
Google Scholar
Owolabi ATY, Reece SE, Schneider P. Daily rhythms of both host and parasite affect antimalarial drug efficacy. Evol Med Public Health. 2021;9:208–19.
Google Scholar
Platon L, Leroy D, Fidock DA, Ménard D. Drug-induced stress mediates Plasmodium falciparum ring-stage growth arrest and reduces in vitro parasite susceptibility to artemisinin. Microbiol Spectr. 2024;12:e0350023.
Google Scholar
Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q. Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis. 2010;202:1362–8.
Google Scholar
Tucker MS, Mutka T, Sparks K, Patel J, Kyle DE. Phenotypic and genotypic analysis of in vitro selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother. 2012;56:302–14.
Google Scholar
Nakazawa S, Maoka T, Uemura H, Ito Y, Kanbara H. Malaria parasites giving rise to recrudescence in vitro. Antimicrob Agents Chemother. 2002;46:958–65.
Google Scholar
Roques M, Bindschedler A, Beyeler R, Heussler VT. Same, same but different: exploring Plasmodium cell division during liver stage development. PLOS Pathog. 2023;19:e1011210.
Google Scholar
Vvd V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M, et al. Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl Acad Sci USA. 2014;111:15256–60.
Coleman MD, Mihaly GW, Edwards G, Ward SA, Howells RE, Breckenridge AM. Pyrimethamine pharmacokinetics and its tissue localization in mice: effect of dose size. J Pharm Pharmacol. 1985;37:170–4.
Google Scholar
O’Donnell AJ, Reece SE. Ecology of asynchronous asexual replication: the intraerythrocytic development cycle of Plasmodium berghei is resistant to host rhythms. Malar J. 2021;20:105.
Google Scholar
Carvalho Cabral P, Weinerman J, Olivier M, Cermakian N. Time of day and circadian disruption influence host response and parasite growth in a mouse model of cerebral malaria. iScience. 2024;27:109684.
Google Scholar
Spence PJ, Jarra W, Lévy P, Nahrendorf W, Langhorne J. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi. Malar J. 2012;11:e407.
Foley DH, Harrison G, Murphy JR, Dowler M, Rueda LM, Wilkerson RC. Mosquito bisection as a variable in estimates of PCR-derived malaria sporozoite rates. Malar J. 2012;11:145.
Google Scholar
Pichugin A, Krzych U. Detection of Plasmodium berghei and Plasmodium yoelii liver-stage parasite burden by quantitative real-time PCR. New York: Humana Press; 2015.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleid Acids Res. 2001;29:e45.
Google Scholar
Chen H, Rangasamy M, Tan SY, Wang H, Siegfried BD. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE. 2010;5:e11963.
Google Scholar
Bell AS, Blanford S, Jenkins N, Thomas MB, Read AF. Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: technique validation and first applications. J Invertebr Pathol. 2009;100:160–8.
Google Scholar
Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, et al. Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts. PLoS Pathog. 2017;13:e1006108.
Google Scholar
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramjith J, Harouna S, et al. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P falciparum gametocytes. Elife. 2024;12:90989.
R Core Team. R: A Language and Environment for Statistical Computing. 4.3.0 ed: R Foundation for Statistical Computing, Vienna, Austria.; 2023.
Anderson DR, Burnham KP. Avoiding pitfalls when using information-theoretic methods. J Wildl Manag. 2002;66:912–8.
Prior KF, Middleton B, Owolabi ATY, Westwood ML, Holland J, O’Donnell AJ, et al. Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid. Wellcome Open Res. 2021;6:186.
Google Scholar
Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL, et al. Circadian control of lung inflammation in influenza infection. Nat Comm. 2019;10:4107.
March S, Nerurkar N, Jain A, Andrus L, Kim D, Whittaker CA, et al. Autonomous circadian rhythms in the human hepatocyte regulate hepatic drug metabolism and inflammatory responses. Sci Adv. 2024;10:9281.
Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A. Immune escape strategies of malaria parasites. Front Microbiol. 2016;7:1617.
Google Scholar
Lahree A, Mello-Vieira J, Mota MM. The nutrient games – Plasmodium metabolism during hepatic development. Trends Parasitol. 2023;39:445–60.
Google Scholar
Chora ÂF, Mota MM, Prudêncio M. The reciprocal influence of the liver and blood stages of the malaria parasite’s life cycle. Int J Parasitol. 2022;52:711–5.
Google Scholar
Rund SSC, Hou TY, Ward SM, Collins FH, Duffield GE. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA. 2011;108:E421–30.
Google Scholar
Schleicher TR, Yang J, Freudzon M, Rembisz A, Craft S, Hamilton M, et al. A mosquito salivary gland protein partially inhibits Plasmodium sporozoite cell traversal and transmission. Nat Comm. 2018;9:2908.
Arora G, Chuang YM, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol. 2023;44:256–65.
Google Scholar
O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors. 2019;12:301.
Google Scholar
Bogale HN, Pascini TV, Kanatani S, Sá JM, Wellems TE, Sinnis P, et al. Transcriptional heterogeneity and tightly regulated changes in gene expression during Plasmodium berghei sporozoite development. Proc Natl Acad Sci USA. 2021;118:e2023438118.
Google Scholar