van Hedger, S. C. & Johnsrude, I. S. in Speech Perception – Springer Handbook of Auditory Research Vol. 74 (eds Lori, L. H., et al.) 141 – 172 (Springer Charm, 2022).
Hoben, R., Easow, G., Pevzner, S. & Parker, M. A. Outer hair cell and auditory nerve function in speech recognition in quiet and in background noise. Front Neurosci. 11, 157 (2017).
Google Scholar
Fettiplace, R. & Hackney, C. M. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7, 19–29 (2006).
Google Scholar
Guinan, J. J. Jr. Cochlear efferent innervation and function. Curr. Opin. Otolaryngol. Head. Neck Surg. 18, 447–453 (2010).
Google Scholar
Dallos, P. & Harris, D. Properties of auditory nerve responses in absence of outer hair cells. J. Neurophysiol. 41, 365–383 (1978).
Google Scholar
Ruggero, M. A. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol. 2, 449–456 (1992).
Google Scholar
Heeringa, A. N. & Köppl, C. Auditory nerve fiber discrimination and representation of naturally-spoken vowels in noise. eNeuro 9 https://doi.org/10.1523/ENEURO.0474-21.2021 (2022).
Delgutte, B. & Kiang, N. Y. Speech coding in the auditory nerve: V. Vowels in background noise. J. Acoust. Soc. Am. 75, 908–918 (1984).
Google Scholar
Geisler, C. D. & Silkes, S. M. Responses of “lower-spontaneous-rate” auditory-nerve fibers to speech syllables presented in noise. II: Glottal-pulse periodicities. J. Acoust. Soc. Am. 90, 3140–3148 (1991).
Google Scholar
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).
Google Scholar
Joris, P. X. & Yin, T. C. Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91, 215–232 (1992).
Google Scholar
Dreyer, A. & Delgutte, B. Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization. J. Neurophysiol. 96, 2327–2341 (2006).
Google Scholar
Heeringa, A. N., Jüchter, C., Beutelmann, R., Klump, G. M. & Köppl, C. Altered neural encoding of vowels in noise does not affect behavioral vowel discrimination in gerbils with age-related hearing loss. Front Neurosci. 17, 1238941 (2023).
Google Scholar
Yates, G. K. Dynamic effects in the input/output relationship of auditory nerve. Hear Res. 27, 221–230 (1987).
Google Scholar
Smith, R. L. & Brachman, M. L. Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear Res. 2, 123–133 (1980).
Google Scholar
Heil, P. & Peterson, A. J. Basic response properties of auditory nerve fibers: a review. Cell Tissue Res. 361, 129–158 (2015).
Google Scholar
Carney, L. H. Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss. J. Assoc. Res. Otolaryngol. 19, 331–352 (2018).
Google Scholar
Geisler, C. D. & Sinex, D. G. Responses of primary auditory fibers to combined noise and tonal stimuli. Hear Res. 3, 317–334 (1980).
Google Scholar
Bruce, I. C., Erfani, Y. & Zilany, M. S. A. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hear Res. 360, 40–54 (2018).
Google Scholar
Sumner, C. J., Lopez-Poveda, E. A., O’Mard, L. P. & Meddis, R. A revised model of the inner-hair cell and auditory-nerve complex. J. Acoust. Soc. Am. 111, 2178–2188 (2002).
Google Scholar
Klug, J., Schmors, L., Ashida, G. & Dietz, M. Neural rate difference model can account for lateralization of high-frequency stimuli. J. Acoust. Soc. Am. 148, 678 (2020).
Google Scholar
Johannesen, P. T., Leclere, T., Wijetillake, A., Segovia-Martinez, M. & Lopez-Poveda, E. A. Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hear Res. 426, 108621 (2022).
Google Scholar
Nuetzel, J. M. & Hafter, E. R. Lateralization of complex waveforms: effects of fine structure, amplitude, and duration. J. Acoust. Soc. Am. 60, 1339–1346 (1976).
Google Scholar
Dietz, M., Bernstein, L. R., Trahiotis, C., Ewert, S. D. & Hohmann, V. The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. J. Acoust. Soc. Am. 134, 494–502 (2013).
Google Scholar
Siebert, W. M. in Recognizing Patterns (ed Kolers, P. A., Eden, M.) 104–133 (MIT Press, 1968).
Dreyer, A. A. & Oxenham, A. J. Effects of level and background noise on interaural time difference discrimination for transposed stimuli. J. Acoust. Soc. Am. 123, EL1–EL7 (2008).
Google Scholar
Bernstein, L. R. & Trahiotis, C. Discrimination of interaural temporal disparities conveyed by high-frequency sinusoidally amplitude-modulated tones and high-frequency transposed tones: effects of spectrally flanking noises. J. Acoust. Soc. Am. 124, 3088–3094 (2008).
Google Scholar
Hu, H. & Dietz, M. Comparison of interaural electrode pairing methods for bilateral cochlear implants. Trends Hear 19 https://doi.org/10.1177/2331216515617143 (2015).
Schmiedt, R. A. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil – comparisons to cat data. Hear. Res. 42, 23–35 (1989).
Google Scholar
Huet, A. et al. The interplay between spike-time and spike-rate modes in the auditory nerve encodes tone-in-noise threshold. J. Neurosci. 38, 5727–5738 (2018).
Google Scholar
Heeringa, A. N., Teske, F., Ashida, G. & Köppl, C. Cochlear aging disrupts the correlation between spontaneous rate and sound-level coding in auditory nerve fibers. J. Neurophysiol. 130, 736–750 (2023).
Google Scholar
Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467 (1971).
Klug, J. & Dietz, M. Frequency dependence of sensitivity to interaural phase differences in pure tones. J. Acoust. Soc. Am. 152, 3130 (2022).
Google Scholar
Temboury-Gutierrez, M. et al. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration. Hear. Res. 446, 109005 (2024).
Google Scholar
Delgutte, B. & Kiang, N. Y. Speech coding in the auditory nerve: I. Vowel-like sounds. J. Acoust. Soc. Am. 75, 866–878 (1984).
Google Scholar
Shera, C. A., Guinan, J. J. Jr. & Oxenham, A. J. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc. Natl. Acad. Sci. USA 99, 3318–3323 (2002).
Google Scholar
Ruggero, M. A., Robles, L. & Rich, N. C. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J. Neurophysiol. 68, 1087–1099 (1992).
Google Scholar
Ruggero, M. A. in The Mammalian Auditory Pathway: Neurophysiology Vol. 2 (eds Popper, A. N. & Fay, R. R.) Ch. 2, 34 – 93 (Springer Charm, 1992).
Schmiedt, R. A., Mills, J. H. & Adams, J. C. Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise. Hear. Res. 45, 221–236 (1990).
Google Scholar
Patuzzi, R. & Sellick, P. M. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. II. Inner hair cell receptor potentials. Hear. Res. 13, 9–18 (1984).
Patuzzi, R., Sellick, P. M. & Johnstone, B. M. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hear. Res. 13, 19–27 (1984).
Google Scholar
Guinan, J. J., Jr. in Auditory and Vestibular Efferents (ed Ryugo, D. K., Fay, R. R., Popper, A. N.) (Springer Science + Business Media, LLC, 2011).
Schofield, B. R. in Auditory and Vestibular Efferents (ed Fay, D. K., Ryugo, R. R.; Popper, A. N.) (Springer Science + Business Media, LLC., 2011).
Glasberg, B. R. & Moore, B. C. Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J. Acoust. Soc. Am. 79, 1020–1033 (1986).
Google Scholar
Schonweiler, R. & Raap, M. Notched-noise-BERA: methods and diagnostic use. Laryngorhinootologie 86, 336–344 (2007).
Google Scholar
Lugli, M., Romani, R., Ponzi, S., Bacciu, S. & Parmigiani, S. The windowed sound therapy: a new empirical approach for an effective personalized treatment of tinnitus. Int. Tinnitus J. 15, 51–61 (2009).
Google Scholar
Patterson, R. D. Auditory filter shapes derived with noise stimuli. J. Acoust. Soc. Am. 59, 640–654 (1976).
Google Scholar
Glasberg, B. R. & Moore, B. C. Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990).
Google Scholar
Glasberg, B. R., Moore, B. C. & Lutfi, R. A. Off-frequency listening and masker uncertainty. J. Acoust. Soc. Am. 72, 273–275 (1982).
Google Scholar
Jennings, S. G. & Strickland, E. A. Auditory filter tuning inferred with short sinusoidal and notched-noise maskers. J. Acoust. Soc. Am. 132, 2497–2513 (2012).
Google Scholar
Verhulst, S., Altoe, A. & Vasilkov, V. Computational modeling of the human auditory periphery: auditory-nerve responses, evoked potentials and hearing loss. Hear. Res. 360, 55–75 (2018).
Google Scholar
Schadler, M. R., Warzybok, A., Hochmuth, S. & Kollmeier, B. Matrix sentence intelligibility prediction using an automatic speech recognition system. Int. J. Audio. 54, 100–107 (2015).
Beutelmann, R. & Brand, T. Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 120, 331–342 (2006).
Google Scholar
Culling, J. F. & Lavandier, M. in Binaural Hearing. Springer Handbook of Auditory Research Vol. 73 (eds Litovsky, R. Y., Goupell, M. J., Fay, R. R. & Popper, A. N.) (Springer, 2021).
Hulsmeier, D. & Kollmeier, B. How much individualization is required to predict the individual effect of suprathreshold processing deficits? Assessing Plomp’s distortion component with psychoacoustic detection thresholds and FADE. Hear. Res. 426, 108609 (2022).
Google Scholar
Herrmann, S. & Dietz, M. Model-based selection of most informative diagnostic tests and test parameters. Acta Acust 5, 1–12 (2021).
Jurgens, T., Clark, N. R., Lecluyse, W. & Meddis, R. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing. Int. J. Audio. 55, 346–357 (2016).
Zilany, M. S. & Bruce, I. C. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J. Acoust. Soc. Am. 120, 1446–1466 (2006).
Google Scholar
Greenwood, D. D. Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 33, 1344–1356 (1961).
Miller, C. A., Abbas, P. J. & Robinson, B. K. Response properties of the refractory auditory nerve fiber. J. Assoc. Res. Otolaryngol. 2, 216–232 (2001).
Google Scholar
Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969).
Google Scholar
Mardia, K. V. & Jupp, P. E. Directional Statistics (Wiley, New York, 2000).
Heeringa, A. N. Single-unit data for sensory neuroscience: Responses from the auditory nerve of young-adult and aging gerbils. Sci. Data 11, 411 (2024).
Google Scholar
Ewert, S. D. in Proceedings of the International Conference on Acoustics. 1326-1329 (AIA-DAGA).
Hafter, E. R., Dye, R. H., Jr. & Gilkey, R. H. Lateralization of tonal signals which have neither onsets nor offsets. J. Acoust. Soc. Am. 65, 471-477 (1979).
Henning, G. B. Lateralization of low-frequency transients. Hear. Res. 9, 153–172 (1983).
Google Scholar
Thavam, S. & Dietz, M. Smallest perceivable interaural time differences. J. Acoust. Soc. Am. 145, 458 (2019).
Google Scholar
Best, V., Gallun, F. J., Carlile, S. & Shinn-Cunningham, B. G. Binaural interference and auditory grouping. J. Acoust. Soc. Am. 121, 1070–1076 (2007).
Google Scholar
Heeringa, A. N. Single-unit auditory nerve fibre responses of young-adult and aging gerbils [Data set]. DRYAD https://doi.org/10.5061/dryad.qv9s4mwn4 (2024).
Klug, J. & Dietz, M. Psychoacoustic data for the study “Notched noise reveals differential improvement in the neural representation of sound” [Data set]. Zenodo https://doi.org/10.5281/zenodo.15005127 (2025).