Mechanisms and etiology of male health disorders: hormones, cancer, and fertility | Cell Communication and Signaling

  • Endocrinology of the Testis. and Male Reproduction | SpringerLink [Internet]. [cited 2025 Jul 23]. Available from: https://link.springer.com/https://doi.org/10.1007/978-3-319-44441-3

  • Jahangir M, Nazari M, Babakhanzadeh E, Manshadi SD. Where do obesity and male infertility collide? BMC Med Genom. 2024;17:128.

    Article 

    Google Scholar 

  • Zhang Y, Song J-Y, Sun Z-G. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol. 2025;132:108832.

    Article 
    PubMed 

    Google Scholar 

  • Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36:327–39.

    Article 
    PubMed 

    Google Scholar 

  • Heck AL, Handa RJ. Sex differences in the hypothalamic–pituitary–adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacol. 2019;44:45–58.

    Article 

    Google Scholar 

  • Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, et al. The Hypothalamic-Pituitary-Adrenal axis: Development, programming actions of Hormones, and Maternal-Fetal interactions. Front Behav Neurosci. 2020;14:601939.

    Article 
    PubMed 

    Google Scholar 

  • Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Primers. 2021;7:9.

    Article 
    PubMed 

    Google Scholar 

  • Ng KL. The Etiology of Prostate Cancer. In: Bott SR, Ng KL, editors. Prostate Cancer [Internet]. Brisbane (AU): Exon Publications; 2021 [cited 2025 Jul 14]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK571322/

  • Fichtner A, Nettersheim D, Bremmer F. Pathogenesis and pathobiology of testicular germ cell tumours: a view from a developmental biological perspective with guidelines for pathological diagnostics. Histopathology. 2024;85:701–15.

    Article 
    PubMed 

    Google Scholar 

  • Fichtner A, Richter A, Filmar S, Gaisa NT, Schweyer S, Reis H, et al. The detection of isochromosome i(12p) in malignant germ cell tumours and tumours with somatic malignant transformation by the use of quantitative real-time polymerase chain reaction. Histopathology. 2021;78:593–606.

    Article 
    PubMed 

    Google Scholar 

  • Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics. 2015;7:120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics. 2020;12:65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gentile G, De Stefano F, Sorrentino C, D’Angiolo R, Lauretta C, Giovannelli P, et al. Androgens as the old age stick in skeletal muscle. Cell Communication Signal. 2025;23:167.

    Article 

    Google Scholar 

  • Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, et al. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Communication Signal. 2025;23:84.

    Article 

    Google Scholar 

  • Löf C, Sultana N, Goel N, Heron S, Wahlström G, House A, et al. ANO7 expression in the prostate modulates mitochondrial function and lipid metabolism. Cell Communication Signal. 2025;23:71.

    Article 

    Google Scholar 

  • Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, et al. CXCR4 regulates macrophage M1 polarization by altering Glycolysis to promote prostate fibrosis. Cell Communication Signal. 2024;22:456.

    Article 

    Google Scholar 

  • Li Z, Wang Y, Yu Z, Luo Y, Zhao Y, Xue E, et al. UHRF1 phase separation mediates stable inheritance of DNA methylation and promotes the proliferation of prostate cancer cells. Cell Communication Signal. 2025;23:297.

    Article 

    Google Scholar 

  • Feng Y, Sun J, Kang X, Wang Y, Liu K, Wang W, et al. NASP implication in the androgen receptor associated with castration resistance in prostate cancer. Cell Communication Signal. 2025;23:331.

    Article 

    Google Scholar 

  • Zhong C, Wang J, Peng H, Lu J, Long Z, Lin Z, et al. GG-NER’s role in androgen receptor signaling inhibitor response for advanced prostate cancer. Cell Communication Signal. 2024;22:600.

    Article 

    Google Scholar 

  • Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, et al. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. Cell Commun Signal. 2024;22:528.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavares NT, Lourenço C, Constâncio V, Fernandes-Pontes F, Fonseca D, Silva-Santos R, et al. MicroRNA-371–373 cluster extracellular vesicle-based communication in testicular germ cell tumors. Cell Communication Signal. 2025;23:252.

    Article 

    Google Scholar 

  • Cui Y, Zhou X, Zhang J, Fang B, Ge J, Tang H, et al. Exploiting potential molecular compounds for treating testicular seminoma by targeting immune related genes. Cell Communication Signal. 2024;22:560.

    Article 

    Google Scholar 

  • Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Communication Signal. 2024;22:504.

    Article 

    Google Scholar 

  • Zhao H, Li J, Xiao Z, Xiao Y. Dose-dependent role of AMH and AMHR2 signaling in male differentiation and regulation of sex determination in Spotted knifejaw (Oplegnathus punctatus) with X1X1X2X2/X1X2Y chromosome system. Cell Communication Signal. 2025;23:59.

    Article 

    Google Scholar 

  • Zhai W, Tian H, Liang X, Wu Y, Wen J, Liu Z, et al. Androgen blockage impairs proliferation and function of Sertoli cells via Wee1 and Lfng. Cell Communication Signal. 2024;22:498.

    Article 

    Google Scholar 

  • Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of Manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Communication Signal. 2025;23:250.

    Article 

    Google Scholar 

  • Zhou H, Xu Z, Jiang C, Wu Q, Zhang C, Liu Z, et al. Ionizing radiation-induced disruption of Rela-Bclaf1-spliceosome regulatory axis in primary spermatocytes causing spermatogenesis dysfunction. Cell Communication Signal. 2025;23:58.

    Article 

    Google Scholar 

  • Agnieszka M-M, Magdalena B-N, Mariola S, Andrzej C. PRDX5 and PRDX6 translocation and oligomerization in bull sperm: a response to cryopreservation-induced oxidative stress. Cell Communication Signal. 2025;23:15.

    Article 

    Google Scholar 

  • Graffeo ML, Nguyen J, Parast FY, Dunleavy JEM, Korneev D, Yang H, et al. A novel mechanism of sperm midpiece epididymal maturation and the role of CCDC112 in sperm midpiece formation and Establishing an optimal flagella waveform. Cell Communication Signal. 2025;23:319.

    Article 

    Google Scholar 

  • Hu T, Tang X, Ruan T, Long S, Liu G, Ma J, et al. IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal sperm morphology in humans and mice. Cell Communication Signal. 2025;23:41.

    Article 

    Google Scholar 

  • Al-Ali H, Baig A, Alkhanjari RR, Murtaza ZF, Alhajeri MM, Elbahrawi R, et al. Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics. Cell Communication Signal. 2024;22:523.

    Article 

    Google Scholar 

  • Errico A, Ambrosini G, Vinco S, Bottani E, Dalla Pozza E, Marroncelli N, et al. In vitro effect of hCG on Cryptorchid patients’ gubernacular cells: a predictive model for adjuvant personalized therapy. Cell Communication Signal. 2025;23:19.

    Article 

    Google Scholar 

  • Continue Reading