Dynamic graph-based quantum feature selection for accurate fetal plane classification in ultrasound imaging

  • Chen, C., Isa, N. A. M. & Liu, X. A review of convolutional neural network-based methods for medical image classification. Comput. Biol. Med. 185, 109507. https://doi.org/10.1016/j.compbiomed.2024.109507 (2025).

    Google Scholar 

  • Yu, M., Xu, Z. & Lukasiewicz, T. A general survey on medical image super-resolution via deep learning. Comput. Biol. Med. 193, 110345 (2025).

    Google Scholar 

  • Jia, Y., Dong, L. & Jiao, Y. Medical image classification based on contour processing attention mechanism. Comput. Biol. Med. 191, 110102 (2025).

    Google Scholar 

  • Zhong, C., Li, G., Meng, Z., Li, H. & He, W. A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection. Comput. Biol. Med. 153, 106520. https://doi.org/10.1016/j.compbiomed.2022.106520 (2023).

    Google Scholar 

  • Yue, J., Guo, Y. & Gao, H. Wrapper-based feature selection for general dataset: the quantum sand cat swarm optimization. In 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT) (pp. 1–6). IEEE. (2024)

  • Haribabu, M. & Guruviah, V. FFSWOAFuse: Multi-modal medical image fusion via fermatean fuzzy set and Whale optimization algorithm. Comput. Biol. Med. 189, 109889 (2025).

    Google Scholar 

  • Krishna, T. B. & Kokil, P. Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models. Expert Syst. Appl. 238, 122153. https://doi.org/10.1016/j.eswa.2023.122153 (2024).

    Google Scholar 

  • Rahman, R. et al. Demystifying evidential dempster Shafer-based CNN architecture for fetal plane detection from 2D ultrasound images leveraging fuzzy-contrast enhancement and explainable AI. Ultrasonics 132, 107017. https://doi.org/10.1016/j.ultras.2023.107017 (2023).

    Google Scholar 

  • Sarker, M. M. K. et al. COMFormer: Classification of maternal-fetal and Brain Anatomy Using a Residual cross-covariance attention-guided Transformer in Ultrasound (IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023).

  • Burgos-Artizzu, X. P. et al. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 10 (1), 10200. https://doi.org/10.1038/s41598-020-67076-5 (2020).

    Google Scholar 

  • Rathika, S., Mahendran, K., Sudarsan, H. & Ananth, S. V. Novel neural network classification of maternal fetal ultrasound planes through optimized feature selection. BMC Med. Imaging. 24 (1), 337. https://doi.org/10.1186/s12880-024-01453-8 (2024).

    Google Scholar 

  • Rauf, F. et al. Automated deep bottleneck residual 82-layered architecture with bayesian optimization for the classification of brain and common maternal fetal ultrasound planes. Front. Med. 10, 1330218. https://doi.org/10.3389/fmed.2023.1330218 (2023).

    Google Scholar 

  • Al-Razgan, M., Ali, Y. A. & Awwad, E. M. Enhancing fetal medical image analysis through attention-guided convolution: A comparative study with established models. J. Disabil. Res. 3 (2), 20240005. https://doi.org/10.57197/JDR-2024-0005 (2024).

    Google Scholar 

  • Pratap, T., Dhulipalla, V. R. & Kokil, P. Exploring the potential of pre-trained CNN models for robust maternal–fetal ultrasound plane classification. Biomed. Signal Process. Control. 108, 107918. https://doi.org/10.1016/j.bspc.2025.107918 (2025).

    Google Scholar 

  • Guo, J., Tan, G., Wu, F., Wen, H. & Li, K. Fetal ultrasound standard plane detection with coarse-to-fine. (2022).

  • Li, F. et al. FHUSP-NET: A multi-task model for fetal heart ultrasound standard plane recognition and key anatomical structures detection. Comput. Biol. Med. 168, 107741 (2024).

    Google Scholar 

  • Oghli, M. G. et al. Automatic fetal biometry prediction using a novel deep convolutional network architecture. Physica Med. 88, 127–137. https://doi.org/10.1016/j.ejmp.2021.06.015 (2021).

    Google Scholar 

  • Turkan, M., Dandil, E., Urfali, F. E. & Korkmaz, M. FetalMovNet: A Novel Deep Learning Model Based on Attention Mechanism for Fetal Movement Classification in US (IEEE Access, 2025).

  • Zhao, L. et al. An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph. Future Generation Comput. Syst. 135, 234–243. https://doi.org/10.1016/j.future.2022.05.010 (2022).

    Google Scholar 

  • Lasala, A., Fiorentino, M. C., Micera, S., Bandini, A. & Moccia, S. Exploiting class activation mappings as prior to generate fetal brain ultrasound images with GANs. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1–4). IEEE. https://doi.org/10.1109/EMBC40787.2023.10340253(2023).

  • Lasala, A., Fiorentino, M. C., Bandini, A. & Moccia, S. FetalBrainAwareNet: bridging GANs with anatomical insight for fetal ultrasound brain plane synthesis. Comput. Med. Imaging Graph. 116, 102405. https://doi.org/10.1016/j.compmedimag.2024.102405 (2024).

    Google Scholar 

  • Prabakaran, B. S., Hamelmann, P., Ostrowski, E. & Shafique, M. FPUS23: an ultrasound fetus Phantom dataset with deep neural network evaluations for fetus orientations, fetal planes, and anatomical features. IEEE Access. 11, 58308–58317 (2023).

    Google Scholar 

  • Henderson, M., Shakya, S., Pradhan, S. & Cook, T. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2 (1), 2 (2020).

    Google Scholar 

  • Hassan, E. et al. A quantum convolutional network and ResNet-50-based classification architecture for the MNIST medical dataset. Biomed. Signal Process. Control. 87, 105560. https://doi.org/10.1016/j.bspc.2023.105560 (2024).

    Google Scholar 

  • Bilal, A. et al. BC-QNet: A quantum-infused ELM model for breast cancer diagnosis. Comput. Biol. Med. 108, 108483. https://doi.org/10.1016/j.compbiomed.2024.108483 (2024).

    Google Scholar 

  • Rao, G. E., Rajitha, B., Srinivasu, P. N., Ijaz, M. F. & Woźniak, M. Hybrid framework for respiratory lung diseases detection based on classical CNN and quantum classifiers from chest X-rays. Biomed. Signal Process. Control. 88, 105567. https://doi.org/10.1016/j.bspc.2023.105567 (2024).

    Google Scholar 

  • Toledo-Cortés, S., Useche, D. H., Müller, H. & González, F. A. Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. Comput. Biol. Med. 145, 105472. https://doi.org/10.1016/j.compbiomed.2022.105472 (2022).

    Google Scholar 

  • Gao, Z. et al. Graph-enhanced ensembles of multi-scale structure perception deep architecture for fetal ultrasound plane recognition. Eng. Appl. Artif. Intell. 136, 108885. https://doi.org/10.1016/j.engappai.2024.108885 (2024).

    Google Scholar 

  • Harikumar, A., Surendran, S. & Gargi, S. Explainable AI in deep learning based classification of fetal ultrasound image planes. Procedia Comput. Sci. 233, 1023–1033 (2024).

    Google Scholar 

  • Mandal, A. K., Sen, R., Goswami, S., Chakrabarti, A. & Chakraborty, B. A new approach for feature subset selection using quantum-inspired owl search algorithm. In 2020 10th International Conference on Information Science and Technology (ICIST) (pp. 266–273). IEEE. (2020)

  • Pu, Z., Koutti, L., Masmoudi, L. & de Oliveira, J. V. A super-resolution method based on generative adversarial networks with quantum feature enhancement: application to aerial agricultural images. Neurocomputing 577, 127346 (2024).

    Google Scholar 

  • Abdulhussien, A. A., Nasrudin, M. F., Darwish, S. M. & Alyasseri, Z. A. A. Feature selection method based on quantum inspired genetic algorithm for Arabic signature verification. J. King Saud Univ. – Comput. Inform. Sci. 35 (3), 141–156. https://doi.org/10.1016/j.jksuci.2021.08.005 (2023).

    Google Scholar 

  • Li, M., Zhang, H., Fan, L. & Han, Z. A quantum feature selection method for network intrusion detection. In 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (pp. 281–289). IEEE. (2022)

  • Turati, G., Dacrema, M. F. & Cremonesi, P. Feature selection for classification with QAOA. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) (pp. 782–785). IEEE. (2022)

  • Chikhaoui, B. Enhancing Classification Accuracy with Quantum Non-Negative Matrix Factorization and Quantum Support Vector Machines. In 2025 International Conference on Quantum Communications, Networking, and Computing (QCNC) (pp. 539–543). IEEE. (2025)

  • Chen, K. C., Matsuyama, H. & Huang, W. H. Learning to learn with quantum optimization via quantum neural networks. arXiv preprint arXiv:2505.00561. https://arxiv.org/abs/2505.00561(2025).

  • Akhavan, M. & Hasheminejad, S. M. H. A graph-based feature selection using class-feature association map (CFAM). In 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE) (pp. 19–24). IEEE. (2021)

  • Hatami, M., Mahmood, S. R. & Moradi, P. A graph-based multi-label feature selection using ant colony optimization. In 2020 10th International Symposium on Telecommunications (IST) (pp. 175–180). IEEE. (2020)

  • Akhiat, Y., Asnaoui, Y., Chahhou, M. & Zinedine, A. June). A new graph feature selection approach. In 2020 6th IEEE Congress on Information Science and Technology (CiSt) (156–161). IEEE. (2021).

  • Dalvand, A., Dowlatshahi, M. B. & Hashemi, A. SGFS: A semi-supervised graph-based feature selection algorithm based on the PageRank algorithm. In 2022 27th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1–6). IEEE. (2022)

  • Cheng, F. et al. Graph-based feature selection in classification: structure and node dynamic mechanisms. IEEE Trans. Emerg. Top. Comput. Intell. 7 (4), 1314–1328 (2022).

    Google Scholar 

  • Zhong, J., Shang, R., Xu, S. & Li, Y. Graph embedding orthogonal decomposition: A synchronous feature selection technique based on collaborative particle swarm optimization. Pattern Recogn. 152, 110453. https://doi.org/10.1016/j.patcog.2024.110453 (2024).

    Google Scholar 

  • Jiang, L., Zhang, C. & Chen, F. QSeer: A Quantum-Inspired Graph Neural Network for Parameter Initialization in Quantum Approximate Optimization Algorithm Circuits. arXiv preprint arXiv:2505.06810. https://arxiv.org/abs/2505.06810(2025).

  • Li, Y. et al. Implementing graph-theoretic feature selection by quantum approximate optimization algorithm. IEEE Trans. Neural Networks Learn. Syst. 35 (2), 2364–2377 (2022).

    Google Scholar 

  • Turaka, P. & Panigrahy, S. K. Chaotic Adaptive Particle Swarm Optimization and Quantum-Inspired Genetic Algorithm for Robust Feature Selection in IoT Intrusion Detection. In 2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM) (pp. 1–6). IEEE. (2025)

  • Shahriyar, M. F., Tanbhir, G., Chy, A. M. R., Tanzin, M. A. A. A. & Mashrafi, M. J. PhishVQC: Optimizing Phishing URL Detection with Correlation Based Feature Selection and Variational Quantum Classifier. In 2025 3rd International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC) (pp. 1226–1231). IEEE. (2025)

  • Yin, T. et al. A robust multilabel feature selection approach based on graph structure considering fuzzy dependency and feature interaction. IEEE Trans. Fuzzy Syst. 31 (12), 4516–4528 (2023).

    Google Scholar 

  • Nath, R. K., Thapliyal, H. & Humble, T. S. Quantum annealing for automated feature selection in stress detection. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 453–457). IEEE. (2021)

  • Ye, Z., Yu, K., Guo, G. D. & Lin, S. Quantum self-organizing feature mapping neural network algorithm based on Grover search algorithm. Phys. A: Stat. Mech. Its Appl. 639, 129690. https://doi.org/10.1016/j.physa.2024.129690 (2024).

    Google Scholar 

  • He, Z. et al. Gradient-based optimization for quantum architecture search. Neural Netw. 179, 106508. https://doi.org/10.1016/j.neunet.2024.106508 (2024).

    Google Scholar 

  • Lu, S. Y., Zhang, Y. D. & Yao, Y. D. A regularized transformer with adaptive token fusion for alzheimer’s disease diagnosis in brain magnetic resonance images. Eng. Appl. Artif. Intell. 155, 111058. https://doi.org/10.1016/j.engappai.2025.111058 (2025).

    Google Scholar 

  • Lu, S. Y., Zhu, Z., Zhang, Y. D. & Yao, Y. D. Tuberculosis and pneumonia diagnosis in chest X-rays by large adaptive filter and aligning normalized network with report-guided multi-level alignment. Eng. Appl. Artif. Intell. 158, 111575. https://doi.org/10.1016/j.engappai.2025.111575 (2025).

    Google Scholar 

  • Lu, S. Y., Zhu, Z., Tang, Y., Zhang, X. & Liu, X. CTBViT: A novel ViT for tuberculosis classification with efficient block and randomized classifier. Biomed. Signal Process. Control https://doi.org/10.1016/j.bspc.2024.106981 (2025).

    Google Scholar 

  • Hekal, A. A., Elnakib, A., Moustafa, H. E. D. & Amer, H. M. Breast cancer segmentation from ultrasound images using deep dual-decoder technology with attention network. IEEE Access. 12, 10087–10101 (2024).

    Google Scholar 

  • Hekal, A. A., Amer, H. M., Elnakib, A. & https://doi.org/10.1016/j.bspc.2024.107434H. E. D., & Automatic measurement of head circumference in fetal ultrasound images using a squeeze atrous pooling UNet. Biomed. Signal Process. Control. 103, 107434 (2025).

    Google Scholar 

  • Stoean, C. et al. An assessment of the usefulness of image pre-processing for the classification of first trimester fetal heart ultrasound using convolutional neural networks. In 2021 25th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 242–248). IEEE. (2021)

  • Yasrab, R. et al. A machine learning method for automated description and workflow analysis of first trimester ultrasound scans. IEEE Trans. Med. Imaging. 42 (5), 1301–1313 (2022).

    Google Scholar 

  • Li, J., Gao, Z., Wang, C., Pu, B. & Li, K. A rule-guided interpretable lightweight framework for fetal standard ultrasound plane capture and biometric measurement. Neurocomputing 621, 129290. https://doi.org/10.1016/j.neucom.2024.129290 (2025).

    Google Scholar 

  • Li, Y. et al. FNBUI-NET: A multi-task model for fetal nasal bone ultrasound image defect detection and classification. Biomed. Signal Process. Control. 104, 107586 (2025).

    Google Scholar 

  • Migliorelli, G. et al. On the use of contrastive learning for standard-plane classification in fetal ultrasound imaging. Comput. Biol. Med. 174, 108430. https://doi.org/10.1016/j.compbiomed.2024.108430 (2024).

    Google Scholar 

  • Torres, H. R. et al. A review of image processing methods for fetal head and brain analysis in ultrasound images. Comput. Methods Programs Biomed. 215, 106629. https://doi.org/10.1016/j.cmpb.2022.106629 (2022).

    Google Scholar 

  • Fiorentino, M. C., Villani, F. P., Di Cosmo, M., Frontoni, E. & Moccia, S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image. Anal. 83, 102629 (2023).

    Google Scholar 

  • Burgos-Artizzu, X. P. et al. Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the Estimation of gestational age. Am. J. Obstet. Gynecol. MFM. 3 (6), 100462. https://doi.org/10.1016/j.ajogmf.2021.100462 (2021).

    Google Scholar 

  • Płotka, S. et al. BabyNet++: fetal birth weight prediction using biometry multimodal data acquired less than 24 hours before delivery. Comput. Biol. Med. 167, 107602. https://doi.org/10.1016/j.compbiomed.2023.107602 (2023).

    Google Scholar 

  • Belciug, S. & Iliescu, D. G. Deep learning and Gaussian mixture modelling clustering mix: A new approach for fetal morphology view plane differentiation. J. Biomed. Inform. 143, 104402. https://doi.org/10.1016/j.jbi.2023.104402 (2023).

    Google Scholar 

  • Płotka, S. S. et al. Deep learning for Estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound. Am. J. Obstet. Gynecol. MFM. 5 (12), 101182. https://doi.org/10.1016/j.ajogmf.2023.101182 (2023).

    Google Scholar 

  • Dan, T. et al. DeepGA for automatically estimating fetal gestational age through ultrasound imaging. Artif. Intell. Med. 135, 102453 (2023).

    Google Scholar 

  • Ghabri, H., Fathallah, W., Sakli, H. & Abdelkarim, M. N. Enhancing maternofetal ultrasound images toward boosting classification performance on a diverse and comprehensive data. In 2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA) (pp. 1–6). IEEE. (2023)

  • Alasmawi, H., Bricker, L. & Yaqub, M. FUSC: fetal ultrasound semantic clustering of second-trimester scans using deep self-supervised learning. Ultrasound. Med. Biol. 50 (5), 703–711. https://doi.org/10.1016/j.ultrasmedbio.2024.01.010 (2024).

    Google Scholar 

  • Dawood, Y. et al. November). Imaging fetal anatomy. Semin. Cell Dev. Biol. 131, 78–92. https://doi.org/10.1016/j.semcdb.2022.02.023 (2022).

    Google Scholar 

  • Alzubaidi, M. et al. Large-scale annotation dataset for fetal head biometry in ultrasound images. Data Brief. 51, 109708. https://doi.org/10.1016/j.dib.2023.109708 (2023).

    Google Scholar 

  • Zhao, H. et al. Memory-based unsupervised video clinical quality assessment with multi-modality data in fetal ultrasound. Med. Image. Anal. 90, 102977. https://doi.org/10.1016/j.media.2023.102977 (2023).

    Google Scholar 

  • Cai, Y. et al. Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med. Image. Anal. 65, 101762. https://doi.org/10.1016/j.media.2020.101762 (2020).

    Google Scholar 

  • Pitchal, P., Ponnusamy, S. & Soundararajan, V. Heart disease prediction: improved quantum convolutional neural network and enhanced features. Expert Syst. Appl. 249, 123534 (2024).

    Google Scholar 

  • Saranya, R. & Jaichandran, R. Enhancing COVID-19 diagnosis from lung CT scans using optimized quantum-inspired complex convolutional neural network with ResNeXt-50. Biomed. Signal Process. Control. 95, 106295. https://doi.org/10.1016/j.bspc.2024.106295 (2024).

    Google Scholar 

  • S., Priyadharshni V., Ravi (2025) Hybrid Quantum-Convolutional Neural Network With Spatial Attention for Accurate Classification of Maternal-Fetal Planes in Ultrasound Images IEEE Access 13188306-188325 10.1109/ACCESS.2025.3625205

    Google Scholar 

  • Continue Reading