A dual-domain seasonal hybrid forecasting strategy for PV power considering dynamic uncertain fluctuations

  • Liu, Z. L. et al. Prediction of long-term photovoltaic power generation in the context of climate change. Renew. Energy. 235, 13 (2024).

    Google Scholar 

  • Ruan, T. Q. et al. A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data. Appl. Energy. 359, 13 (2024).

    Google Scholar 

  • Jiang, M. et al. Research on time-series based and similarity search based methods for PV power prediction. Energy Convers. Manag. 308, 24 (2024).

    Google Scholar 

  • Li, Z. et al. Heterogeneous spatiotemporal graph convolution network for multi-modal wind-PV power collaborative prediction. IEEE Trans. Power Syst. 39, 5591–5608 (2024).

    Google Scholar 

  • Zhang, H. L., Shi, J. & Zhang, C. P. A hybrid ensembled double-input-fuzzy-modules based precise prediction of PV power generation. Energy Rep. 8, 1610–1621 (2022).

    Google Scholar 

  • Wang, L. N. et al. Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model. Energy 262, 18 (2023).

    Google Scholar 

  • Cui, S. H. et al. Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE. Energy 307, 15 (2024).

    Google Scholar 

  • Peng, S. M. et al. Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model. Energy 298, 16 (2024).

    Google Scholar 

  • Pierre, A. A. et al. Peak electrical energy consumption prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU approaches. Energies 16, 12 (2023).

    Google Scholar 

  • Yang, M. et al. A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder. Renew. Energy. 194, 659–673 (2022).

    Google Scholar 

  • Ma, Y. W. et al. A Two-Stage LSTM optimization method for ultrashort term PV power prediction considering major meteorological factors. IEEE Trans. Ind. Inf. 21, 228–237 (2025).

    Google Scholar 

  • Mo, F. et al. A novel multi-step ahead solar power prediction scheme by deep learning on transformer structure. Renew. Energy. 230, 11 (2024).

    Google Scholar 

  • Son, W. & Lee, Y. R. Day-ahead prediction of PV power output: A one-year case study at Changwon in South Korea. J. Electr. Eng. Technol. 20, 71–79 (2025).

    Google Scholar 

  • Souhe, F. G. Y. et al. Optimized forecasting of photovoltaic power generation using hybrid deep learning model based on GRU and SVM. Electr. Eng. 106, 7879–7898 (2024).

    Google Scholar 

  • Wang, L. S. et al. Short-term PV power prediction based on optimized VMD and LSTM. IEEE Access. 8, 165849–165862 (2020).

    Google Scholar 

  • Tovar, M., Robles, M., Rashid, F. & Power Prediction, P. V. Using CNN-LSTM hybrid neural network model. Case of study: Temixco-Morelos, Mexico. Energies. 13, 15. (2020).

  • Li, B., Wang, H. Z. & Zhang, J. H. Short-term power forecasting of photovoltaic generation based on CFOA-CNN-BiLSTM-attention. Electr. Eng. 107, 10335–10347 (2025).

    Google Scholar 

  • Liu, M. L. et al. Day-ahead photovoltaic power forecasting based on corrected numeric weather prediction and domain generalization. Energy Build. 329, 15 (2025).

    Google Scholar 

  • Wang, T. S. et al. A dual-layer decomposition and multi-model driven combination interval forecasting method for short-term PV power generation. Expert Syst. Appl. 288, 16 (2025).

    Google Scholar 

  • Jiang, J. J. et al. Short-term PV power prediction based on VMD-CNN-IPSO-LSSVM hybrid model. Int. J. Low-Carbon Technol. 19, 1160–1167 (2024).

    Google Scholar 

  • Chen, G. C. et al. Photovoltaic power prediction based on VMD-BRNN-TSP. Mathematics 11, 14 (2023).

    Google Scholar 

  • Ma, W. T. et al. PV power forecasting based on relevance vector machine with sparrow search algorithm considering seasonal distribution and weather type. Energies 15, 24 (2022).

    Google Scholar 

  • Dai, H. A. et al. A short-term PV power forecasting method based on weather type credibility prediction and multi-model dynamic combination. Energy Conv Manag. 326, 20 (2025).

    Google Scholar 

  • Choudhury, S. & Dash, P. K. A hybrid neural network based solar PV power classification with time series data for bend, Oregon. Int. J. Green. Energy. 21, 2753–2770 (2024).

    Google Scholar 

  • Fan, X. W. et al. Transformer-BiLSTM fusion neural network for short-term PV output prediction based on NRBO algorithm and VMD. Appl. Sci. -Basel. 14, 19 (2024).

    Google Scholar 

  • Li, R. et al. Short-term photovoltaic prediction based on CNN-GRU optimized by improved similar day extraction, decomposition noise reduction and SSA optimization, IET renew. Power Gener. 18, 908–928 (2024).

    Google Scholar 

  • Wang, X. Y. et al. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. Energy 240, 15 (2022).

    Google Scholar 

  • Tang, H. D. et al. Short-term photovoltaic power prediction model based on feature construction and improved transformer. Energy 320, 11 (2025).

    Google Scholar 

  • Ouyang, J. et al. Seasonal distribution analysis and short-term PV power prediction method based on decomposition optimization Deep-Autoformer. Renew. Energy. 246, 15 (2025).

    Google Scholar 

  • Liu, T. et al. Sliding time-frequency synchronous average based on autocorrelation function for extracting fault feature of bearings. Adv. Eng. Inf. 62, 16 (2024).

    Google Scholar 

  • Kreutzer, L. T. et al. S-ACF: a selective estimator for the autocorrelation function of irregularly sampled time series. Mon not Roy Astron. Soc. 522, 5049–5061 (2023).

    Google Scholar 

  • Liu, L. F. et al. SSA-GAN: singular spectrum Analysis-Enhanced generative adversarial network for multispectral pansharpening. Mathematics 13, 13 (2025).

    Google Scholar 

  • Li, Y. H. et al. SSA-LHCD: A singular spectrum Analysis-Driven lightweight network with 2-D Self-Attention for hyperspectral change detection. Remote Sens. 16, 19 (2024).

    Google Scholar 

  • Gu, J. L. et al. Generalized singular spectrum analysis for the decomposition and analysis of non-stationary signals. J. Frankl. Inst. -Eng Appl. Math. 361, 19 (2024).

    Google Scholar 

  • Mirza, A. F. et al. A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model. Energy 283, 13 (2023).

    Google Scholar 

  • Zhou, D. X. et al. Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM. Energy 318, 18 (2025).

    Google Scholar 

  • Huang, S. T. et al. Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting. Energy 290, 16 (2024).

    Google Scholar 

  • Limouni, T. et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy. 205, 1010–1024 (2023).

    Google Scholar 

  • Continue Reading