Human and viral chemokines differentially modulate G protein signaling, β-arrestin recruitment and chemotaxis mediated by the viral G protein-coupled receptor ORF74 | Cell Communication and Signaling

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated kaposi’s sarcoma. Science. 1994;266:1865–9. https://doi.org/10.1126/science.7997879.

    Google Scholar 

  • Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Primers. 2019;5:9. https://doi.org/10.1038/s41572-019-0060-9.

    Google Scholar 

  • Vischer HF, Siderius M, Leurs R, Smit MJ. Herpesvirus-encoded gpcrs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov. 2014;13:123–39. https://doi.org/10.1038/nrd4189.

    Google Scholar 

  • De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G protein–coupled receptors: attractive targets for herpesvirus-associated diseases. Pharmacol Rev. 2021;73:828–46. https://doi.org/10.1124/pharmrev.120.000186.

    Google Scholar 

  • Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, et al. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol. 2025;182:26–51. https://doi.org/10.1111/bph.17379.

    Google Scholar 

  • Syrovatkina V, Alegre KO, Dey R, Huang X-Y. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol. 2016;428:3850–68. https://doi.org/10.1016/j.jmb.2016.08.002.

    Google Scholar 

  • Gurevich VV, Gurevich EV. GPCR signaling regulation: the role of GRKs and arrestins. Front Pharmacol. 2019;10:125. https://doi.org/10.3389/fphar.2019.00125.

    Google Scholar 

  • Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72. https://doi.org/10.1038/nri.2017.49.

    Google Scholar 

  • Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29:10–21. https://doi.org/10.1038/s41417-021-00303-x.

    Google Scholar 

  • de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol. 2015. https://doi.org/10.3389/fphar.2015.00040.

    Google Scholar 

  • Lyngaa R, Nørregaard K, Kristensen M, Kubale V, Rosenkilde MM, Kledal TN. Cell transformation mediated by the Epstein-Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene. 2010;29:4388–98. https://doi.org/10.1038/onc.2010.173.

    Google Scholar 

  • Maussang D, Verzijl D, Van Walsum M, Leurs R, Holl J, Pleskoff O, et al. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA. 2006;103:13068–73. https://doi.org/10.1073/pnas.0604433103.

    Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L. G-protein-coupled receptor of kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391:86–9. https://doi.org/10.1038/34193.

    Google Scholar 

  • Yang T-Y, Chen S-C, Leach MW, Manfra D, Homey B, Wiekowski M, et al. Transgenic Expression of the Chemokine Receptor Encoded by Human Herpesvirus 8 Induces an Angioproliferative Disease Resembling Kaposi’s Sarcoma. J Exp Med. 2000;191:445–54. https://doi.org/10.1084/jem.191.3.445.

    Google Scholar 

  • Holst PJ, Rosenkilde MM, Manfra D, Chen SC, Wiekowski MT, Holst B, et al. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J Clin Invest. 2001;108:1789–96. https://doi.org/10.1172/JCI13622.

    Google Scholar 

  • Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G, Kelley K, et al. The Human Herpes Virus 8-Encoded Chemokine Receptor Is Required for Angioproliferation in a Murine Model of Kaposi’s Sarcoma. J Immunol. 2005;174:3686–94. https://doi.org/10.4049/jimmunol.174.6.3686.

    Google Scholar 

  • Cesarman E, Nador RG, Bai F, Bohenzky RA, Russo JJ, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol. 1996;70:8218–23. https://doi.org/10.1128/jvi.70.11.8218-8223.1996.

    Google Scholar 

  • Chiou C-J, Poole LJ, Kim PS, Ciufo DM, Cannon JS, Ap Rhys CM, et al. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2002;76:3421–39. https://doi.org/10.1128/JVI.76.7.3421-3439.2002.

    Google Scholar 

  • Cannon M, Philpott NJ, Cesarman E. The kaposi’s Sarcoma-Associated herpesvirus G Protein-Coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol. 2003;77:57–67. https://doi.org/10.1128/JVI.77.1.57-67.2003.

    Google Scholar 

  • Cannon ML, Cesarman E. The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene. 2004;23:514–23. https://doi.org/10.1038/sj.onc.1207021.

    Google Scholar 

  • Montaner S, Sodhi A, Servitja J-M, Ramsdell AK, Barac A, Sawai ET, et al. The small GTPase Rac1 links the Kaposi sarcoma–associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood. 2004;104:2903–11. https://doi.org/10.1182/blood-2003-12-4436.

    Google Scholar 

  • Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T, Kozasa T, et al. Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve Gα13 and RhoA. J Biol Chem. 2001;276:45979–87. https://doi.org/10.1074/jbc.M104783200.

    Google Scholar 

  • Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic assessment of chemokine ligand bias at the human chemokine receptor CXCR2 indicates G protein bias over β-arrestin recruitment and receptor internalization. Cell Commun Signal. 2024;22:43. https://doi.org/10.1186/s12964-023-01460-2.

    Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature. 1997;385:347–50. https://doi.org/10.1038/385347a0.

    Google Scholar 

  • Geras-Raaka E, Varma A, Ho H, Clark-Lewis I, Gershengorn MC. Human Interferon-γ–inducible protein 10 (IP-10) inhibits constitutive signaling of kaposi’s Sarcoma–associated herpesvirus G protein–coupled receptor. J Exp Med. 1998;188:405–8. https://doi.org/10.1084/jem.188.2.405.

    Google Scholar 

  • Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I. Chemokines activate kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest. 1998;102:1469–72. https://doi.org/10.1172/JCI4461.

    Google Scholar 

  • Geras-Raaka E, Varma A, Clark-Lewis I, Gershengorn MC. Kaposi’s sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Commun. 1998;253:725–7. https://doi.org/10.1006/bbrc.1998.9557.

    Google Scholar 

  • Rosenkilde MM, Kledal TN, Bräuner-Osborne H, Schwartz TW. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem. 1999;274:956–61. https://doi.org/10.1074/jbc.274.2.956.

    Google Scholar 

  • Ho HH, Du D, Gershengorn MC. The N terminus of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity. J Biol Chem. 1999;274:31327–32. https://doi.org/10.1074/jbc.274.44.31327.

    Google Scholar 

  • Rosenkilde MM, Schwartz TW. Potency of ligands correlates with affinity measured against agonist and inverse agonists but not against neutral ligand in constitutively active chemokine receptor. Mol Pharmacol. 2000;57:602–9. https://doi.org/10.1124/mol.57.3.602.

    Google Scholar 

  • Schwarz M, Murphy PM. Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol. 2001;167:505–13. https://doi.org/10.4049/jimmunol.167.1.505.

    Google Scholar 

  • Pati S, Cavrois M, Guo HG, Foulke JSJ, Kim J, Feldman RA, et al. Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of kaposi’s sarcoma pathogenesis. J Virol United States. 2001;75:8660–73. https://doi.org/10.1128/jvi.75.18.8660-8673.2001.

    Google Scholar 

  • Hensbergen PJ, Verzijl D, Balog CIA, Dijkman R, van der Schors RC, van der Raaij-Helmer EMH, et al. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity. J Biol Chem United States. 2004;279:13402–11. https://doi.org/10.1074/jbc.M312814200.

    Google Scholar 

  • de Munnik SM, van der Lee R, Velders DM, van Offenbeek J, de Smits- Vries L, Leurs R, et al. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R. Cell Signal. 2016;28:595–605. https://doi.org/10.1016/j.cellsig.2016.02.017.

    Google Scholar 

  • Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol Microbiol Soc. 2016;97:543–60. https://doi.org/10.1099/jgv.0.000370.

    Google Scholar 

  • Couty J-P, Lupu-Meiri M, Oron Y, Gershengorn MC. Kaposi’s sarcoma-associated herpesvirus-G protein-coupled receptor-expressing endothelial cells exhibit reduced migration and stimulated chemotaxis by chemokine inverse agonists. J Pharmacol Exp Ther. 2009;329:1142–7. https://doi.org/10.1124/jpet.108.147686.

    Google Scholar 

  • Liu L, Doijen J, D’huys T, Verhaegen Y, Dehaen W, De Jonghe S, et al. Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol. 2021;188:114565. https://doi.org/10.1016/j.bcp.2021.114565.

    Google Scholar 

  • Schoofs G, Van Hout A, D’huys T, Schols D, Van Loy T. A flow Cytometry-based assay to identify compounds that disrupt binding of Fluorescently-labeled CXC chemokine ligand 12 to CXC chemokine receptor 4. JoVE. 2018;57271. https://doi.org/10.3791/57271.

  • Claes S, D’huys T, Van Hout A, Schols D, Van Loy T. A kinetic Fluorescence-based Ca2+ mobilization assay to identify G Protein-coupled receptor Agonists, Antagonists, and allosteric modulators. JoVE. 2018;56780. https://doi.org/10.3791/56780.

  • Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. Nanoluc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol. 2016;11:400–8. https://doi.org/10.1021/acschembio.5b00753.

    Google Scholar 

  • Liu C, Sandford G, Fei G, Nicholas J. Ga protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 G protein-coupled receptor. J Virol. 2004. https://doi.org/10.1128/jvi.78.5.2460-2471.2004.

    Google Scholar 

  • de Munnik SM, Kooistra AJ, van Offenbeek J, Nijmeijer S, de Graaf C, Smit MJ, et al. The viral G protein-coupled receptor ORF74 hijacks β-arrestins for endocytic trafficking in response to human chemokines. PLoS One. 2015;10:e0124486. https://doi.org/10.1371/journal.pone.0124486.

    Google Scholar 

  • Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC chemokine receptor 4 (CCR4) as a possible new target for therapy. Int J Mol Sci. 2022;23:15638. https://doi.org/10.3390/ijms232415638.

    Google Scholar 

  • Liu A, Liu Y, Llinàs Del Torrent Masachs C, Zhang W, Pardo L, Ye RD. Structural insights into KSHV-GPCR constitutive activation and CXCL1 chemokine recognition. Proc Natl Acad Sci U S A. 2024;121:e2403217121. https://doi.org/10.1073/pnas.2403217121.

    Google Scholar 

  • Park JB, Sahoo B, Sahoo AR, Kim D, Seo HD, Bowman J, et al. Structural basis for ligand promiscuity and high signaling activity of kaposi’s Sarcoma-associated Herpesvirus-encoded GPCR. Nat Commun. 2025;16:8403. https://doi.org/10.1038/s41467-025-63457-4.

    Google Scholar 

  • Rosenkilde MM, Kledal TN, Holst PJ, Schwartz TW. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem. 2000;275:26309–15. https://doi.org/10.1074/jbc.M003800200.

    Google Scholar 

  • Feng H, Sun Z, Farzan MR, Feng P. Sulfotyrosines of the kaposi’s Sarcoma-Associated herpesvirus G Protein-Coupled receptor promote tumorigenesis through autocrine activation. J Virol. 2010;84:3351–61. https://doi.org/10.1128/JVI.01939-09.

    Google Scholar 

  • Zhang R, Xie X. Tools for GPCR drug discovery. Acta Pharmacol Sin. 2012;33:372–84. https://doi.org/10.1038/aps.2011.173.

    Google Scholar 

  • Zhang J, He S, Wang Y, Brulois K, Lan K, Jung JU, et al. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase. PLoS Pathog. 2015;11:e1004768. https://doi.org/10.1371/journal.ppat.1004768.

    Google Scholar 

  • Machleidt T, Woodroofe CC, Schwinn MK, Méndez J, Robers MB, Zimmerman K, et al. NanoBRET—a novel BRET platform for the analysis of Protein–Protein interactions. ACS Chem Biol. 2015;10:1797–804. https://doi.org/10.1021/acschembio.5b00143.

    Google Scholar 

  • Ma X, Leurs R, Vischer HF. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. New York, NY: Springer US; 2021. pp. 233–48. https://doi.org/10.1007/978-1-0716-1221-7_16. G Protein-Coupled Receptor Screening Assays [Internet].

  • Luo J, Li D, Wei D, Wang X, Wang L, Zeng X. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly. Mol Cell Biochem. 2017;436:13–21. https://doi.org/10.1007/s11010-017-3072-3.

    Google Scholar 

  • Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71:4131–48. https://doi.org/10.1007/s00018-014-1678-0.

    Google Scholar 

  • Couty J-P, Geras-Raaka E, Weksler BB, Gershengorn MC. Kaposi’s Sarcoma-associated Herpesvirus G Protein-coupled Receptor Signals through Multiple Pathways in Endothelial Cells. J Biol Chem. 2001;276:33805–11. https://doi.org/10.1074/jbc.m104631200.

    Google Scholar 

  • Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R. Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J Virol. 2002;76:1744–52. https://doi.org/10.1128/jvi.76.4.1744-1752.2002.

    Google Scholar 

  • Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, et al. Control of chemokine-guided cell migration by ligand sequestration. Cell. 2008;132:463–73. https://doi.org/10.1016/j.cell.2007.12.034.

    Google Scholar 

  • Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J Biol Chem. 2011;286:32188–97. https://doi.org/10.1074/jbc.M111.277038.

    Google Scholar 

  • Desnoyer A, Dupin N, Assoumou L, Carlotti A, Gaudin F, Deback C, et al. Expression pattern of the CXCL12/CXCR4-CXCR7 trio in Kaposi sarcoma skin lesions. Br J Dermatol. 2016;175:1251–62. https://doi.org/10.1111/bjd.14748.

    Google Scholar 

  • Kwon E-K, Min C-K, Kim Y, Lee J-W, Aigerim A, Schmidt S, et al. Constitutive activation of T cells by γ2-herpesviral GPCR through the interaction with cellular CXCR4. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2017;1864:1–11. https://doi.org/10.1016/j.bbamcr.2016.10.008.

    Google Scholar 

  • Nijmeijer S, Leurs R, Smit MJ, Vischer HF. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem. 2010;285:29632–41. https://doi.org/10.1074/jbc.M110.115618.

    Google Scholar 

  • Gouwy M, Struyf S, Noppen S, Schutyser E, Springael J-Y, Parmentier M, et al. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through Receptor-Mediated events. Mol Pharmacol. 2008;74:486–96. https://doi.org/10.1124/mol.108.045146.

    Google Scholar 

  • Lane BR, Liu J, Bock PJ, Schols D, Coffey MJ, Strieter RM, et al. Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi’s sarcoma. J Virol. 2002;76:11570–83. https://doi.org/10.1128/JVI.76.22.11570-11583.2002.

    Google Scholar 

  • Xu Y, Ganem D. Induction of chemokine production by latent kaposi’s sarcoma-associated herpesvirus infection of endothelial cells. J Gen Virol. 2007;88:46–50. https://doi.org/10.1099/vir.0.82375-0.

    Google Scholar 

  • Lee M, Lee J, Kang S, Wirth D, Yoo S, Park C. CXCL1 confers a survival advantage in Kaposi’s sarcoma-associated herpesvirus‐infected human endothelial cells through STAT3 phosphorylation. J Med Virol. 2023;95:jmv.28020. https://doi.org/10.1002/jmv.28020.

    Google Scholar 

  • Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The clinical significance and involvement in molecular cancer processes of chemokine CXCL1 in selected tumors. IJMS. 2024;25:4365. https://doi.org/10.3390/ijms25084365.

    Google Scholar 

  • Li X, Ohler ZW, Day A, Bassel L, Grosskopf A, Afsari B et al. Mapping herpesvirus-driven impacts on the cellular milieu and transcriptional profile of Kaposi sarcoma in patient-derived mouse models. BioRxiv. 2024. https://doi.org/10.1101/2024.09.27.615429. Cited 2025 Sep 9.

  • Knowlton ER, Rappocciolo G, Piazza P, Lepone LM, Nadgir SV, Bullotta A, et al. Human herpesvirus 8 induces polyfunctional B lymphocytes that drive Kaposi’s sarcoma. mBio. 2014;5:e01277-14. https://doi.org/10.1128/mBio.01277-14.

    Google Scholar 

  • Pontejo SM, Murphy PM, Pease JE. Chemokine subversion by human herpesviruses. J Innate Immun. 2018;10:465–78. https://doi.org/10.1159/000492161.

    Google Scholar 

  • Palande V, Roden RBS, Choi YB. Nano-luciferase complementation assay of human herpesvirus 8 chemo/cytokine-receptor interactions. Sci Rep. 2025;15:35365. https://doi.org/10.1038/s41598-025-19281-3.

    Google Scholar 

  • West J, Damania B. Upregulation of the TLR3 pathway by kaposi’s sarcoma-associated herpesvirus during primary infection. J Virol. 2008;82:5440–9. https://doi.org/10.1128/JVI.02590-07.

    Google Scholar 

  • Neumeyer S, Tagawa T. The Kaposi sarcoma herpesvirus control of monocytes, macrophages, and the tumour microenvironment. Virology. 2025;601:110286. https://doi.org/10.1016/j.virol.2024.110286.

    Google Scholar 

  • Continue Reading