In recent years, there has been an increasing trend to use IPM types in preference to SPM types for three-phase BLDC motors to achieve low cost, high output, and high torque.
Typical applications…
In recent years, there has been an increasing trend to use IPM types in preference to SPM types for three-phase BLDC motors to achieve low cost, high output, and high torque.
Typical applications…

The pair first sparked romance rumors last August, strolling hand-in-hand through Rome, and have since been spotted together in London, New York, and other cities, keeping things low-key. Even Kravitz’s father, Lenny, is said to have given the…
Liu, Y., James, J. Q., Kang, J., Niyato, D. & Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet Things J. 7 (8), 7751–7763. https://doi.org/10.1109/JIOT.2020.2974820 (2020).
Peng, H. et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416. https://doi.org/10.1016/j.ins.2021.06.053 (2021).
Djenouri, Y., Belhadi, A., Srivastava, G. & Lin, J. C. W. Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting.Future Generation Comput. Syst. 139: 100–108. https://doi.org/10.1016/j.future.2022.09.032. (2023).
Williams, B. M. & Hoel, L. A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664–672. https://doi.org/10.1061/(ASCE)0733-947X (2003).
Zhang, Q., Li, C., Su, F. & Li, Y. Spatiotemporal residual graph attention network for traffic flow forecasting. IEEE Internet Things J. 10 (13), 11518–11532. https://doi.org/10.1109/JIOT.2023.3248874 (2023).
Yu, B., Yin, H. & Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3634–3640. https://doi.org/10.24963/ijcai.2018/505 (2018).
Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. InternationalConference on Learning Representations (ICLR 2018). Vancouver, Canada. https://doi.org/10.48550/arXiv.1707.01926 (2018).
Cai, L., Janowicz., K., Mai., G., Yan., B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12644 (2020).
Liu, H. et al. STAEformer: Spatio-Temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting. Proc. 32nd ACM Int. Conf. Inform. Knowl. Manage. (CIKM). 4125-4129 https://doi.org/10.48550/arXiv.2308.10425 (2023).
Kazemi, S. M. et al. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res. 21 (70), 1–73 (2020).
Zhao, L. et al. T-GCN: A Temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21 (9), 3848–3858. https://doi.org/10.1109/TITS.2019 (2019).
Peng, H. et al. Spatial Temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 521, 277–290. https://doi.org/10.1016/j.ins.2020.02.006 (2020).
Vaswani, A. et al. Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017).
Cai, L., Janowicz, K., Mai, G., Yan, B. & Zhu, R. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS. 24 (3), 736–755. https://doi.org/10.1111/tgis.12607 (2020).
Zheng, C. et al. Spatio-temporal joint graph convolutional networks for traffic forecasting. IEEE Trans. Knowl. Data Eng. 36 (1), 372–385. https://doi.org/10.1109/TKDE.2022 (2023).
Han, L., Du, B., Sun, L., Fu, Y. & Lv, Y. and H. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 547–555 https://doi.org/10.1145/3447548.3467118 (2021).
Kong, J., Fan, X., Zuo, M., Deveci, M., Zhong, K. & X., and ADCT-Net: adaptive traffic forecasting neural network via dual-graphic cross-fused transformer. Inform. Fusion. 103, 102122. https://doi.org/10.1016/j.inffus.2023.102122 (2024).
Wu, C. H., Ho, J. M. & Lee, D. T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5 (4), 276–281. https://doi.org/10.1109/TITS.2004.837813 (2004).
Liu, A. & Zhang. Y Spatial–Temporal dynamic graph convolutional network with interactive learning for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7645–7660. https://doi.org/10.1109/TITS.2024.3362145 (2024).
Wu, Y., Tan, H., Qin, L., Ran, B. & Jiang, Z. A hybrid deep learning based traffic flow prediction method and its Understanding. Transp. Res. Part. C: Emerg. Technol. 90, 166–180. https://doi.org/10.1016/j.trc.2018.03.001 (2018).
Li, M. & Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35(5), 4189–4196 https://doi.org/10.1609/aaai.v35i5.16550 (2021).
Fang, Z., Long, Q. & Song, G. and K. Spatial-temporal graph ODE networks for traffic flow forecasting. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining: 364–373. (2021). https://doi.org/10.1145/3447548.3467141
Xu, Y. et al. Generic dynamic graph convolutional network for traffic flow forecasting. Inform. Fusion. 100, 101946. https://doi.org/10.1016/j. inffus.2023.101946 (2023).
Fang, Y., Zhao, F., Qin, Y., Luo, H. & Wang, C. Learning all dynamics: traffic forecasting via locality-aware spatio-temporal joint transformer. IEEE Trans. Intell. Transp. Syst. 23 (12), 23433–23446. https://doi.org/10.1109/TITS.2022 (2022).
Lin, L., Li, W., Bi, H. & Qin, L. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms. IEEE Intell. Transp. Syst. Mag. 14 (2), 197–208. https://doi.org/10.1109/MITS.2021.3058034 (2021).
Guo, S., Lin, Y., Wan, H., Cong, G. & L., and Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34 (11), 5415–5428. https://doi.org/10.1109/TKDE.2021.3081562 (2021).
Zhu, J. et al. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (9), 15055–15065. https://doi.org/10.1109/TITS.2021.3137177 (2022).
Kong, X., Wang, K., Hou, M., Karmakar, F., Li, J. & G., and Exploring human mobility for multi-pattern passenger prediction: A graph learning framework. IEEE Trans. Intell. Transp. Syst. 23 (9), 16148–16160. https://doi.org/10.1109/TITS.2021 (2022).
Chen, Y., Segovia, I. & Gel, Y. R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting. Proceedings of the 38th International Conference on Machine Learning 139: 1684–1694. (2021).
Lee, K. & Rhee, W. DDP-GCN: Multi-graph convolutional network for Spatiotemporal traffic forecasting. Transp. Res. Part. C: Emerg. Technol. 134, 103466. https://doi.org/10.1016/j.trc.2021.103466 (2022).
Shin, Y. & Yoon, Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 23 (3), 2082–2092. https://doi.org/10.1109/TITS.2021 (2022).
Bai, L., Yao, L., Li, C., Wang, X. & Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020).
Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph WaveNet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence: 1907–1913. (2019). https://doi.org/10.24963/ijcai.2019/264
Wang, W. D. P. K. Spatial–Temporal graph attention gated recurrent transformer network for traffic flow forecasting. IEEE Internet Things J. 11 (8), 14267–14281. https://doi.org/10.1109/JIOT.2023.3340182 (2024).
Shin, Y. & Yoon. Y PGCN: progressive graph convolutional networks for Spatial-Temporal traffic forecasting. IEEE Trans. Intell. Transp. Syst. 25 (7), 7633–7644. https://doi.org/10.1109/TITS.2024.3349565 (2024).
Fang, Y. et al. Efficient large-scale traffic forecasting with transformers: A Spatial data management perspective. KDD ‘25: Proc. 31st ACM SIGKDD Conf. Knowl. Discovery Data Min. 307-317 https://doi.org/10.1145/3690624.3709177 (2024).
Fang, Y. et al. Unraveling spatio-temporal foundation models via the pipeline lens: A comprehensive review. Inf. Fusion. 115, 102346. https://doi.org/10.48550/arXiv.2506.01364 (2025).
Yang., S., Wu., Q., Wang., Y. & Lin, T. SSGCRTN: A space-specific graph convolutional recurrent transformer network for traffic prediction. Appl. Intell. 54 (22), 11978–11994. https://doi.org/10.1007/s10489-024-05815-1 (2024).
Yang., S., Huang., Z., Wu., Q. & Zhuo, Z. MSTDFGRN: A multi-view spatio-temporal dynamic fusion graph recurrent network for traffic flow prediction. Comput. Electr. Eng. 123, 110046. https://doi.org/10.1016/j.compeleceng.2024.110046 (2025).
Yang, S., Wu, Q., Li, Z. & Wang, K. PSTCGCN: principal spatio-temporal causal graph convolutional network for traffic flow prediction. Neural Comput. Appl. 1-14, https://doi.org/10.1007/s00521-024-10769-6 (2024).
Yang., S., Wu., Q., Li., M. & Sun, Y. Temporal identity interaction dynamic graph convolutional network for traffic forecasting. IEEE Internet Things J. 12 (11), 15057–15072. https://doi.org/10.1109/JIOT.2025.3503328 (2025).
Yang., S. & Wu, Q. SDSINet: A Spatiotemporal dual-scale interaction network for traffic prediction. Appl. Soft Comput. 112892. https://doi.org/10.1016/j.asoc.2025.112892 (2025).
Yang., S. & Wu, Q. MTEGCRN: Multi-scale Temporal enhanced graph convolutional recurrent network for traffic prediction. Neurocomputing 131064 https://doi.org/10.1016/j.neucom.2025.131064 (2025).
Yang., S., Wu., Q., Huang., Z. & Zhuo, Z. General Decoupled Graph Convolutional Recurrent Network for Traffic Prediction. IEEE Sensors J. (2025).
Yang., S., Wu., Q. & Li, M. Decoupled Multi-Spatio-Temporal Fusion Graph Convolutional Recurrent Network for Traffic Prediction. Eng. Appl. Artif. Intell. 163: 112956. https://doi.org/10.1016/j.engappai.2025.112956. (2025).
Guo, S., Lin, Y., Feng, N., Song, C. & Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 33(01): 922–929. (2019). https://doi.org/10.1609/aaai.v33i01. 3301922.
Lan, S., Huang, M. Y., Wang, W., Yang, W. & Li, H. P. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. in: International Conference on Machine Learning, PMLR, 11906–11917. (2022).
Li, J. D. S. J. W. R. & Huang, Y. Y., Yang. Y.-B. Trafformer: unify time and space in traffic prediction. in: Proceedings of the AAAI Conference on Artificial Intelligence, 37(7): 8114–8122. (2023).
Shao, Z., Zhang, Z., Wang, F., Wei, W. & Xu, Y. Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. Proceedings of the 31st ACM International Conference on Information & Knowledge Management: 4454–4458. (2022). https://doi.org/10.1145/3511808.3557410
Cui, Z., Henrickson, K., Ke, R. & Wang, Y. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 21 (11), 4883–4894. https://doi.org/10.1109/TITS.2019.2950416 (2020).
Pan, Z. et al. Spatio-temporal meta learning for urban traffic prediction. IEEE Trans. Knowl. Data Eng. 34 (3), 1462–1476. https://doi.org/10.1109/TKDE.2020.2989138 (2020).
Chen, C., Liu, Y., Chen, L. & Zhang, C. Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting. IEEE Trans. Neural Networks Learn. Syst. 34 (10), 6913–6925. https://doi.org/10.1109/TNNLS.2022.3156673 (2022).
Al-Huthaif, R., Li, T., Al-Huda, Z. & Li, C. FedAGAT: Real-time traffic flow prediction based on federated community and adaptive graph attention network. Inf. Sci. 667 (2024), 120482. https://doi.org/10.1016/j.ins.2024.120482 (2024).
Lai, Q. & Chen, P. LEISN: A long explicit-implicit spatio-temporal network for traffic flow forecasting. Expert Syst. Appl. 245 (2024), 123139. https://doi.org/10.1016/j.eswa.2024.123139 (2024).
Wang., R., Xi., L., Ye., J., Zhang., F. & Xu, X. Y. L. Adaptive Spatio-Temporal relation based transformer for traffic flow prediction. IEEE Trans. Veh. Technol. 74 (2), 2220–2230. https://doi.org/10.1109/TVT.2024.3390997 (2025).
Fan., J., Weng., W., Chen., Q., Wu., H. & Wu, J. Pdg2seq: periodic dynamic graph to sequence model for traffic flow prediction. Neural Netw. 183, 106941. https://doi.org/10.1016/j.neunet.2024.106941 (2025).
Wu, B. et al. DT-CTFP: 6 g-enabled digital twin collaborative traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 26 (10), 18129–18144. https://doi.org/10.1109/TITS.2025.3582356 (2025).

If you happen to be near Basel in Switzerland, you could do worse than go and visit the Beyeler Foundation’s exhibition of late works by Cezanne. It’s “eloquent”, according to the FT’s art critic, with paintings which “opened the door…

A global group of scientists, engineers and policy experts has unveiled an ambitious plan to build a wall along the ‘Doomsday Glacier’ as flooding fears continue to grow.
Located on the West Antarctic Ice Sheet, Thwaites Glacier earned its…

Former
Western Force players Jeremy Thrush, Jonno Lance and Chris Heiberg will head up
the Club’s coaching staff for the maiden Super Rugby Next Gen campaign which
starts on Saturday.
The Force
will compete in the new competition featuring…

I had a jab today, oh boy. I have a jab every four weeks. Lanreotide is a drug you may not be familiar with, but it’s designed to quell neuroendocrine tumours (NETs) secreting hormones into my system. You might not be familiar with why anything…

When people think of shopping in Berlin, they picture vintage stores in Kreuzberg or Neukölln, niche concept spaces, or weekend markets, rather than flagship luxury boutiques. International houses have long operated mono-brand outposts in the…