Author: admin

  • Press Remarks by the Spokesperson

    In response to media queries regarding remarks made by the Indian Minister of External Affairs about Pakistan, the Spokesperson of the Ministry of Foreign Affairs, Mr. Tahir Andrabi, stated the following:

    “Pakistan…

    Continue Reading

  • ‘We started an environmentally friendly TV production firm’

    ‘We started an environmentally friendly TV production firm’

    At Factual Fiction, the “ripple effect” of the company’s switch to solar power has “done away with the need to travel”, Emily says.

    On previous productions, she says she travelled every day to a post-production facility in Leeds.

    This added to…

    Continue Reading

  • The Traitors and The Masked Singer prop maker’s “thrill”

    The Traitors and The Masked Singer prop maker’s “thrill”

    The Celebrity Traitors, which was won by Alan Carr, was one of the biggest TV hits of 2025.

    Mr Simpson, the owner of Plunge Creations in Portslade, East Sussex, created the chess props for one of the challenges.

    He told BBC Radio Sussex: “The…

    Continue Reading

  • The Guide #224: Bondage Bronte, to more comeback tours – what will be 2026’s big cultural hitters ? | Culture

    The Guide #224: Bondage Bronte, to more comeback tours – what will be 2026’s big cultural hitters ? | Culture

    Welcome to 2026! I hope you are enjoying the final dribblings of the festive break, before reality bites on Monday. As is now tradition (well, we did it once before), this first newsletter of the new year looks at some of the big questions we…

    Continue Reading

  • EU stands in full solidarity with Switzerland and evacuates victims after Crans-Montana tragedy – European Commission

    EU stands in full solidarity with Switzerland and evacuates victims after Crans-Montana tragedy – European Commission

    1. EU stands in full solidarity with Switzerland and evacuates victims after Crans-Montana tragedy  European Commission
    2. Dozens killed, 100 injured in fire at Swiss ski resort bar, police say  Dawn
    3. Champagne sparklers and a fast-spreading inferno: How…

    Continue Reading

  • New year money: 26 tools and apps to help you sort your finances in 2026 | Money

    New year money: 26 tools and apps to help you sort your finances in 2026 | Money

    Money is central to many people’s new year resolutions – whether it’s trying to save more, organising what you have already, or improving your spending or saving habits.

    Continue Reading

  • Bowie: The Final Act – 10 years after his death, the rock god gets a rapturous resurrection | Television & radio

    Bowie: The Final Act – 10 years after his death, the rock god gets a rapturous resurrection | Television & radio

    There’s a theory that the world spun off its axis with the passing of David Bowie, 10 days into January 2016. It was also two days after his final, death-infused album Blackstar appeared from nowhere. As an artistic statement it was prophetic…

    Continue Reading

  • Panthers injuries continue to mount, lose Jones in Winter Classic defeat

    Panthers injuries continue to mount, lose Jones in Winter Classic defeat

    The good news is there is some help on the way. Tkachuk, who had surgery on Aug. 22, could be back soon. He started practicing in a non-contact jersey on Sunday and could return later this month. Schwindt practiced in a non-contact jersey for…

    Continue Reading

  • Luangcharoenrat, C., Intrachooto, S., Peansupap, V. & Sutthinarakorn, W. Factors Influencing Construction Waste Generation in Building Construction: Thailand’s Perspective, Sustainability 2019, Vol. 11, Page 3638 11 3638. (2019). https://doi.org/10.3390/SU11133638

  • Tafesse, S., Girma, Y. E. & Dessalegn, E. Analysis of the socio-economic and environmental impacts of construction waste and management practices. Heliyon 8, e09169. https://doi.org/10.1016/J.HELIYON.2022.E09169 (2022).

    Google Scholar 

  • Solís-Guzmán, J., Marrero, M., Montes-Delgado, M. V. & Ramírez-de-Arellano, A. A Spanish model for quantification and management of construction waste. Waste Manage. 29, 2542–2548. https://doi.org/10.1016/J.WASMAN.2009.05.009 (2009).

    Google Scholar 

  • Yuan, H., Chini, A. R., Lu, Y. & Shen, L. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste. Waste Manage. 32, 521–531. https://doi.org/10.1016/J.WASMAN.2011.11.006 (2012).

    Google Scholar 

  • Jaradat, H., Alshboul, O. A. M., Obeidat, I. M. & Zoubi, M. K. Green building, carbon emission, and environmental sustainability of construction industry in jordan: Awareness, actions and barriers. Ain Shams Eng. J. 15, 102441. https://doi.org/10.1016/J.ASEJ.2023.102441 (2024).

    Google Scholar 

  • Olabi, A. G. et al. The role of green buildings in achieving the sustainable development goals. Int. J. Thermofluids. 25, 101002. https://doi.org/10.1016/J.IJFT.2024.101002 (2025).

    Google Scholar 

  • Chang, D., Lee, C. K. M. & Chen, C. H. Review of life cycle assessment towards sustainable product development. J. Clean. Prod. 83, 48–60. https://doi.org/10.1016/J.JCLEPRO.2014.07.050 (2014).

    Google Scholar 

  • Campo Gay, I., Hvam, L., Haug, A., Huang, G. Q. & Larsson, R. A digital tool for life cycle assessment in construction projects. Developments Built Environ. 20, 100535. https://doi.org/10.1016/J.DIBE.2024.100535 (2024).

    Google Scholar 

  • Yin, Q. et al. Sustainability, A, Vol. 16, Page 7805 16 (2024) 7805. (2024). https://doi.org/10.3390/SU16177805

  • Cha, G. W., Choi, S. H., Hong, W. H. & Park, C. W. Developing a prediction model of Demolition-Waste Generation-Rate via principal component analysis. Int. J. Environ. Res. Public. Health. 20, 3159. https://doi.org/10.3390/IJERPH20043159 (2023).

    Google Scholar 

  • Samal, C. G., Biswal, D. R., Udgata, G. & Pradhan, S. K. Estimation, Classification, and prediction of construction and demolition waste using machine learning for sustainable waste management: A critical review. Constr. Mater. 2025. 5 (Page 10 5), 10. https://doi.org/10.3390/CONSTRMATER5010010 (2025).

    Google Scholar 

  • Zheng, L., Mueller, M., Luo, C. & Yan, X. Predicting whole-life carbon emissions for buildings using different machine learning algorithms: A case study on typical residential properties in Cornwall, UK. Appl. Energy. 357, 122472. https://doi.org/10.1016/J.APENERGY.2023.122472 (2024).

    Google Scholar 

  • El-Kenawy, E. S. M. et al. Smart City Electricity Load Forecasting Using Greylag Goose Optimization-Enhanced Time Series Analysis, Arab. J. Sci. Eng. https://doi.org/10.1007/S13369-025-10647-3. (2025).

  • Saqr, A. E. S., Saraya, M. S. & El-Kenawy, E. S. M. Enhancing CO2 emissions prediction for electric vehicles using Greylag Goose optimization and machine learning. Sci. Rep. 2025. 15, 1. https://doi.org/10.1038/s41598-025-99472-0 (2025).

    Google Scholar 

  • How Saudi Arabia is making the construction industry greener. and more sustainable, (n.d.). accessed April 29, (2025). https://www.arabnews.com/node/2587731/saudi-arabia

  • Cha, G. W. & Park, C. W. Development of an optimal machine learning model to predict CO2 emissions at the Building demolition Stage, buildings 2025, 15, Page 526 15 526. (2025). https://doi.org/10.3390/BUILDINGS15040526

  • Maged, A., Elshaboury, N. & Akanbi, L. Data-driven prediction of construction and demolition waste generation using limited datasets in developing countries: an optimized extreme gradient boosting approach. Environ. Dev. Sustain. 1–25. https://doi.org/10.1007/S10668-024-04814-Z/METRICS (2024).

  • Lu, W., Long, W. & Yuan, L. A machine learning regression approach for pre-renovation construction waste auditing. J. Clean. Prod. 397, 136596. https://doi.org/10.1016/J.JCLEPRO.2023.136596 (2023).

    Google Scholar 

  • Hu, R., Chen, K., Chen, W., Wang, Q. & Luo, H. Estimation of construction waste generation based on an improved on-site measurement and SVM-based prediction model: A case of commercial buildings in China. Waste Manage. 126, 791–799. https://doi.org/10.1016/J.WASMAN.2021.04.012 (2021).

    Google Scholar 

  • Gulghane, A., Sharma, R. L. & Borkar, P. A formal evaluation of KNN and decision tree algorithms for waste generation prediction in residential projects: a comparative approach. Asian J. Civil Eng. 25, 265–280. https://doi.org/10.1007/S42107-023-00772-5/METRICS (2024).

    Google Scholar 

  • Guerra, B. C., Koo, H. J., Caldas, C. & Leite, F. Prediction of waste diversion and identification of trends in construction and demolition waste data using data mining. Int. J. Constr. Manage. 24, 374–383. https://doi.org/10.1080/15623599.2023.2235106 (2024). ;PAGE:STRING:ARTICLE/CHAPTER.

    Google Scholar 

  • Cha, G. W., Moon, H. J. & Kim, Y. C. A hybrid machine-learning model for predicting the waste generation rate of Building demolition projects. J. Clean. Prod. 375, 134096. https://doi.org/10.1016/J.JCLEPRO.2022.134096 (2022).

    Google Scholar 

  • Akanbi, L. A., Oyedele, A. O., Oyedele, L. O. & Salami, R. O. Deep learning model for demolition waste prediction in a circular economy. J. Clean. Prod. 274, 122843. https://doi.org/10.1016/J.JCLEPRO.2020.122843 (2020).

    Google Scholar 

  • Lu, W. et al. Estimating construction waste generation in the greater Bay Area, China using machine learning. Waste Manage. 134, 78–88. https://doi.org/10.1016/J.WASMAN.2021.08.012 (2021).

    Google Scholar 

  • Cha, G. W., Moon, H. J. & Kim, Y. C. Comparison of random forest and gradient boosting machine models for predicting demolition waste based on small datasets and categorical variables. Int. J. Environ. Res. Public. Health 2021. 18, 8530. https://doi.org/10.3390/IJERPH18168530 (2021).

    Google Scholar 

  • Fang, Y., Lu, X. & Li, H. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. J. Clean. Prod. 328, 129657. https://doi.org/10.1016/J.JCLEPRO.2021.129657 (2021).

    Google Scholar 

  • Razi, N. & Ansari, R. A prediction-based model to optimize construction programs: considering time, cost, energy consumption, and CO2 emissions trade-off. J. Clean. Prod. 445, 141164. https://doi.org/10.1016/J.JCLEPRO.2024.141164 (2024).

    Google Scholar 

  • Hou, Y. & Liu, S. Predictive modeling and validation of carbon emissions from china’s coastal construction industry: A BO-XGBoost ensemble Approach, sustainability 2024, 16, Page 4215 16 4215. (2024). https://doi.org/10.3390/SU16104215

  • Cha, G., Moon, H. & Kim, J. A method to improve the performance of support vector machine regression model for predicting demolition waste generation using categorical principal components analysis. Int. J. Sustainable Building Technol. Urban Dev. 2021. 12 (12), 3. https://doi.org/10.22712/SUSB.20210023 (2021).

    Google Scholar 

  • Jafari, M. & Mousavi, E. Machine learning-based prediction of construction and demolition waste generation in developing countries: a case study. Environ. Sci. Pollut. Res. 1–12. https://doi.org/10.1007/S11356-024-34527-9/METRICS (2024).

  • Li, Q., Meng, Q., Cai, J., Yoshino, H. & Mochida, A. Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks. Energy Convers. Manag. 50, 90–96. https://doi.org/10.1016/J.ENCONMAN.2008.08.033 (2009).

    Google Scholar 

  • Amasyali, K. & El-Gohary, N. M. A review of data-driven Building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205. https://doi.org/10.1016/j.rser.2017.04.095 (2018).

    Google Scholar 

  • Olu-Ajayi, R., Alaka, H., Owolabi, H., Akanbi, L. & Ganiyu, S. Data-Driven Tools for Building Energy Consumption Prediction: A Review, Energies 2023, Vol. 16, Page 2574 16 2574. (2023). https://doi.org/10.3390/EN16062574

  • Ardabili, S., Abdolalizadeh, L., Mako, C., Torok, B. & Mosavi, A. Systematic review of deep learning and machine learning for Building energy. Front. Energy Res. 10, 786027. https://doi.org/10.3389/FENRG.2022.786027/BIBTEX (2022).

    Google Scholar 

  • Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478. https://doi.org/10.2307/30036540 (2003).

    Google Scholar 

  • Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–339. https://doi.org/10.2307/249008 (1989).

    Google Scholar 

  • Jeurissen, R. & Elkington, J. Cannibals With Forks: The Triple Bottom Line of 21st Century Business, Journal of Business Ethics 2000 23:2 23 229–231. (2000). https://doi.org/10.1023/A:1006129603978

  • Rogers, E. M. Diffusion of Innovations, 5th Edition (Google eBook), 576. (2003). https://books.google.com/books/about/Diffusion_of_Innovations_5th_Edition.html?id=9U1K5LjUOwEC (accessed August 18, 2025).

  • Darko, A., Chan, A. P. C., Owusu-Manu, D. G. & Ameyaw, E. E. Drivers for implementing green Building technologies: an international survey of experts. J. Clean. Prod. 145, 386–394. https://doi.org/10.1016/J.JCLEPRO.2017.01.043 (2017).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324/METRICS (2001).

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-August-2016 785–794. (2016). https://doi.org/10.1145/2939672.2939785/SUPPL_FILE/KDD2016_CHEN_BOOSTING_SYSTEM_01-ACM.MP4

  • Ding, G. K. C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manage. 86, 451–464. https://doi.org/10.1016/J.JENVMAN.2006.12.025 (2008).

    Google Scholar 

  • Darko, A. et al. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manage. 19, 436–452. https://doi.org/10.1080/15623599.2018.1452098;SUBPAGE:STRING:ACCESS (2019).

    Google Scholar 

  • Chan, A. P. C., Darko, A., Olanipekun, A. O. & Ameyaw, E. E. Critical barriers to green Building technologies adoption in developing countries: the case of Ghana. J. Clean. Prod. 172, 1067–1079. https://doi.org/10.1016/J.JCLEPRO.2017.10.235 (2018).

    Google Scholar 

  • Alsanad, S. Awareness, Drivers, Actions, and barriers of sustainable construction in Kuwait. Procedia Eng. 118, 969–983. https://doi.org/10.1016/J.PROENG.2015.08.538 (2015).

    Google Scholar 

  • Akadiri, P. O., Olomolaiye, P. O. & Chinyio, E. A. Multi-criteria evaluation model for the selection of sustainable materials for Building projects. Autom. Constr. 30, 113–125. https://doi.org/10.1016/J.AUTCON.2012.10.004 (2013).

    Google Scholar 

  • Ding, Z., Zuo, J., Wu, J. & Wang, J. Y. Key factors for the BIM adoption by architects: A China study. Eng. Constr. Architectural Manage. 22, 732–748. https://doi.org/10.1108/ECAM-04-2015-0053/FULL/XML (2015).

    Google Scholar 

  • Ochieng, E. G., Price, A. & Moore, D. Management of global construction projects. SSRN Electron. J. https://doi.org/10.2139/SSRN.3105473 (2018).

    Google Scholar 

  • Richard & Fellows Anita. Liu, Research methods for construction, (2015). https://www.wiley.com/en-us/Research+Methods+for+Construction%2C+4th+Edition-p-9781118915738 (accessed April 29, 2025).

  • Tate, R., Beauregard, F., Peter, C. & Marotta, L. Pilot testing as a strategy to develop interview and questionnaire skills for scholar practitioners: A selection of education doctorate students’ reflective Vignettes, impacting education. J. Transforming Prof. Pract. 8, 20–25. https://doi.org/10.5195/IE.2023.333 (2023).

    Google Scholar 

  • Kirchner, K., Zec, J. & Delibašić, B. Facilitating data preprocessing by a generic framework: a proposal for clustering. Artif. Intell. Rev. 45, 271–297. https://doi.org/10.1007/S10462-015-9446-6 (2016).

    Google Scholar 

  • Prakash, A., Navya, N. & Natarajan, J. Big data preprocessing for modern world: opportunities and challenges. Lecture Notes Data Eng. Commun. Technol. 26, 335–343. https://doi.org/10.1007/978-3-030-03146-6_37 (2019).

    Google Scholar 

  • Golazad, S. Z., Mohammadi, A., Rashidi, A. & Ilbeigi, M. From Raw to refined: data preprocessing for construction machine learning (ML), deep learning (DL), and reinforcement learning (RL) models. Autom. Constr. 168, 105844. https://doi.org/10.1016/J.AUTCON.2024.105844 (2024).

    Google Scholar 

  • G.E.A.P.A. Batista, M. C. & Monard An analysis of four missing data treatment methods for supervised learning, Appl. Artif. Intell. 17 519–533. https://doi.org/10.1080/713827181;JOURNAL. (2003). :JOURNAL:UAAI20;REQUESTEDJOURNAL:JOURNAL:UAAI20;WGROUP:STRING:PUBLICATION.

  • Data Mining. Concepts and Techniques | ScienceDirect, (n.d.). accessed April 29, (2025). https://www.sciencedirect.com/book/9780123814791/data-mining-concepts-and-techniques

  • Opoku, A. & Fortune, C. Implementation of sustainable practices in UK construction organizations. Int. J. Sustain. Policy Pract. 8, 121–132. https://doi.org/10.18848/2325-1166/CGP/V08I01/55360 (2013).

    Google Scholar 

  • Kernbach, J. M. & Staartjes, V. E. Foundations of machine Learning-Based clinical prediction modeling: part II—Generalization and overfitting. Acta Neurochir. Suppl. (Wien). 134, 15–21. https://doi.org/10.1007/978-3-030-85292-4_3 (2022).

    Google Scholar 

  • Lipkovich, I., Ratitch, B. & Ivanescu, C. Statistical data mining of clinical data. Quant. Methods Pharm. Res. Development: Concepts Appl. 225–315. https://doi.org/10.1007/978-3-030-48555-9_6 (2020).

  • Kuhn, M. & Johnson, K. Applied predictive modeling. Appl. Predictive Model. 1–600. https://doi.org/10.1007/978-1-4614-6849-3/COVER (2013).

  • Mahmood, S. et al. Integrating machine and deep learning technologies in green buildings for enhanced energy efficiency and environmental sustainability. Sci. Rep. 14, 1–17. https://doi.org/10.1038/S41598-024-70519- (2024). Y;SUBJMETA=4066,685,704,844;KWRD=ENERGY+AND+SOCIETY,SUSTAINABILITY.

    Google Scholar 

  • Rashid, K. et al. Machine learning and multicriteria analysis for prediction of compressive strength and sustainability of cementitious materials. Case Stud. Constr. Mater. 21, e04080. https://doi.org/10.1016/J.CSCM.2024.E04080 (2024).

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/J.1600-0587.2012.07348 (2013). .X;PAGE:STRING:ARTICLE/CHAPTER.

    Google Scholar 

  • Awad, M. & Khanna, R. Support vector machines for classification. Efficient Learn. Machines. 39–66. https://doi.org/10.1007/978-1-4302-5990-9_3 (2015).

  • Liu, Y. & Song, H. Study on constructing support vector machine with granular computing. Procedia Eng. 15, 3098–3102. https://doi.org/10.1016/J.PROENG.2011.08.581 (2011).

    Google Scholar 

  • , A. J., Smola, B. & Schölkopf A tutorial on support vector regression. Stat. Comput. 14, 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88 (2004).

    Google Scholar 

  • Tayefeh Hashemi, S., Ebadati, O. M. & Kaur, H. Cost Estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Appl. Sci. 2, 1–27. https://doi.org/10.1007/S42452-020-03497-1/FIGURES/11 (2020).

    Google Scholar 

  • Mai, H. V. T., Nguyen, T. A., Ly, H. B. & Tran, V. Q. Prediction compressive strength of concrete containing GGBFS using random forest model. Adv. Civil Eng. 2021, 6671448. https://doi.org/10.1155/2021/6671448 (2021).

    Google Scholar 

  • Asadi, E., Da Silva, M. G., Antunes, C. H. & Dias, L. Multi-objective optimization for Building retrofit strategies: A model and an application. Energy Build. 44, 81–87. https://doi.org/10.1016/J.ENBUILD.2011.10.016 (2012).

    Google Scholar 

  • Kiangala, S. K. & Wang, Z. An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an industry 4.0 environment. Mach. Learn. Appl. 4, 100024. https://doi.org/10.1016/J.MLWA.2021.100024 (2021).

    Google Scholar 

  • Al-Fakih, A., Al-wajih, E., Saleh, R. A. A. & Muhit, I. B. Ensemble machine learning models for predicting the CO2 footprint of GGBFS-based geopolymer concrete. J. Clean. Prod. 472, 143463. https://doi.org/10.1016/J.JCLEPRO.2024.143463 (2024).

    Google Scholar 

  • Yaseen, Z. M., Ali, Z. H., Salih, S. Q. & Al-Ansari, N. Prediction of risk delay in construction projects using a hybrid artificial intelligence Model, sustainability 2020, 12, Page 1514 12 1514. (2020). https://doi.org/10.3390/SU12041514

  • ForouzeshNejad, A. A., Arabikhan, F. & Aheleroff, S. Optimizing Project Time and Cost Prediction Using a Hybrid XGBoost and Simulated Annealing Algorithm, Machines 2024, Vol. 12, Page 867 12 867. (2024). https://doi.org/10.3390/MACHINES12120867

  • Ji, S., Lee, B. & Yi, M. Y. Building life-span prediction for life cycle assessment and life cycle cost using machine learning: A big data approach. Build. Environ. 205, 108267. https://doi.org/10.1016/J.BUILDENV.2021.108267 (2021).

    Google Scholar 

  • Fan, J. et al. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 164, 102–111. https://doi.org/10.1016/J.ENCONMAN.2018.02.087 (2018).

    Google Scholar 

  • Koo, B., La, S., Cho, N. W. & Yu, Y. Using support vector machines to classify Building elements for checking the semantic integrity of Building information models. Autom. Constr. 98, 183–194. https://doi.org/10.1016/J.AUTCON.2018.11.015 (2019).

    Google Scholar 

  • Kumar, M. et al. Soft computing-based prediction models for compressive strength of concrete. Case Stud. Constr. Mater. 19, e02321. https://doi.org/10.1016/J.CSCM.2023.E02321 (2023).

    Google Scholar 

  • Khan, A. A., Chaudhari, O. & Chandra, R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst. Appl. 244, 122778. https://doi.org/10.1016/J.ESWA.2023.122778 (2024).

    Google Scholar 

  • Xia, Y., Jiang, S., Meng, L. & Ju, X. XGBoost-B-GHM: An Ensemble Model with Feature Selection and GHM Loss Function Optimization for Credit Scoring, Systems 2024, Vol. 12, Page 254 12 254. (2024). https://doi.org/10.3390/SYSTEMS12070254

  • Sathiparan, N., Jeyananthan, P. & Subramaniam, D. N. A comparative study of machine learning techniques and data processing for predicting the compressive strength of pervious concrete with supplementary cementitious materials and chemical composition influence, Next Mater. 9 100947. https://doi.org/10.1016/J.NXMATE.2025.100947. (2025).

  • Alkaissy, M. et al. Enhancing construction safety: machine learning-based classification of injury types. Saf. Sci. 162, 106102. https://doi.org/10.1016/J.SSCI.2023.106102 (2023).

    Google Scholar 

  • Uddin, M. N., Ye, J., Deng, B., Li, L. & Yu, K. Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC). J. Building Eng. 72, 106648. https://doi.org/10.1016/J.JOBE.2023.106648 (2023).

    Google Scholar 

  • Malakouti, S. M. From accurate to actionable: interpretable PM2.5 forecasting with feature engineering and SHAP for the Liverpool–Wirral region. Environ. Challenges. 21, 101290. https://doi.org/10.1016/J.ENVC.2025.101290 (2025).

    Google Scholar 

  • Zhao, Q. et al. The influencing factors and future development of energy consumption and carbon emissions in urban households: A review of china’s experience. Appl. Sci. (Switzerland). 15, 2961. https://doi.org/10.3390/APP15062961/S1 (2025).

    Google Scholar 

  • Zaman, K. Urban governance and power consumption dynamics in china’s carbon-intensive sectors: insights for sustainable development. Urban Gov. 4, 313–328. https://doi.org/10.1016/J.UGJ.2024.12.001 (2024).

    Google Scholar 

Continue Reading

  • Fresh talks on Gaza stabilisation force to focus on mandate as Pakistan maintains caution – Dawn

    1. Fresh talks on Gaza stabilisation force to focus on mandate as Pakistan maintains caution  Dawn
    2. Pakistan Says It Will Not Disarm Hamas, Open to Peacekeeping Role in Gaza  Palestine Chronicle
    3. Pakistan in Trump’s Gaza Plan: Amb. Ausaf Sayeed…

    Continue Reading