Author: admin

  • Computer scientist Yann LeCun: ‘Intelligence really is about learning’ – Financial Times

    Computer scientist Yann LeCun: ‘Intelligence really is about learning’ – Financial Times

    1. Computer scientist Yann LeCun: ‘Intelligence really is about learning’  Financial Times
    2. Meta “Fudged” Llama 4 Benchmarks “A Little Bit”, Says Yann LeCun  OfficeChai
    3. Yann LeCun calls Alexandr Wang ‘inexperienced’ and predicts more Meta AI employee departures  Business Insider
    4. Meta’s most famous employee Yann LeCun breaks silence on why he left Mark Zuckerberg’s company  Times of India
    5. How Meta’s ‘highest-paid’ employee made the company’s chief scientist do what he told Elon Musk he will ‘never do’  Times of India

    Continue Reading

  • 2025 is double-record breaker: UK’s warmest and sunniest year on record – Met Office

    1. 2025 is double-record breaker: UK’s warmest and sunniest year on record  Met Office
    2. 2025 was UK’s hottest and sunniest year on record  Dawn
    3. Double record-breaking year for UK as 2025 confirmed as warmest and sunniest on record  BBC
    4. UK Sets New…

    Continue Reading

  • Ambreen Jan to become new PEMRA chairman

    Ambreen Jan to become new PEMRA chairman

    Ambreen Jan to become new PEMRA chairman


    ISLAMABAD, JAN 2 /DNA/ – Former Information Secretary Ambreen Jan is poised to take charge as the new Chairman of the Pakistan Electronic Media Regulatory Authority (PEMRA). The committee responsible for…

    Continue Reading

  • Callum Beaton succeeds Nicola Stacey as CII president

    Callum Beaton succeeds Nicola Stacey as CII president

    Callum Beaton has succeeded Nicola Stacey as CII president, with Debbie Mitchell serving as deputy president for 2026.

    Beaton began his broking career in 1977, followed by a spell in underwriting at Lloyd’s.

    He subsequently spent almost two…

    Continue Reading

  • Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Garneau, J. E. et al. The CRISPR–Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Marraffini, L. A. CRISPR–Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity. Nature 630, 484–492 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Rauch, B. J. et al. Inhibition of CRISPR–Cas9 with bacteriophage proteins. Cell 168, 150–158.e10 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Camara-Wilpert, S. et al. Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs. Nature 623, 601–607 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marino, N. D. et al. Discovery of widespread type I and type V CRISPR–Cas inhibitors. Science 362, 240–242 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, N. & Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Shu, X. et al. CRISPR-repressed toxin–antitoxin provides herd immunity against anti-CRISPR elements. Nat. Chem. Biol. 21, 337–347 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shmakov, S. et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 20, 641–656 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. et al. Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nat. Catal. 6, 695–709 (2023).

    Article 

    Google Scholar 

  • Takeda, S. N. et al. Structure of the miniature type V-F CRISPR–Cas effector enzyme. Mol. Cell 81, 558–570.e3 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wu, W. Y. et al. The miniature CRISPR–Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487–4502.e7 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dmytrenko, O. et al. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 613, 588–594 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, R. et al. SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics 37, 3364–3366 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. et al. Programmed genome editing by a miniature CRISPR–Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Holmgren, A. Thioredoxin. Annu. Rev. Biochem. 54, 237–271 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Martin, J. L. Thioredoxin—a fold for all reasons. Structure 3, 245–250 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Zeller, T. & Klug, G. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93, 259–266 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Chartron, J., Shiau, C., Stout, C. D. & Carroll, K. S. 3′-Phosphoadenosine-5′-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle. Biochemistry 46, 3942–3951 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Hwang, J. et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 5, 2958 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Z. et al. Structural basis for thioredoxin-mediated suppression of NLRP1 inflammasome. Nature 622, 188–194 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ball, D. P. et al. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci. Immunol. 7, eabm7200 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Y. et al. Structures and operating principles of the replisome. Science 363, eaav7003 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabor, S., Huber, H. E. & Richardson, C. C. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212–16223 (1987).

    Article 
    PubMed 

    Google Scholar 

  • Park, J.-U. et al. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 613, 775–782 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Nakagawa, R. et al. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature 616, 390–397 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR–cas endonuclease. Cell 167, 1814–1828.e12 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurihara, N. et al. Structure of the type V-C CRISPR–Cas effector enzyme. Mol. Cell 82, 1865–1877.e4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuchida, C. A. et al. Chimeric CRISPR–CasX enzymes and guide RNAs for improved genome editing activity. Mol. Cell 82, 1199–1209.e6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935.e23 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Li, Z., Zhang, H., Xiao, R., Han, R. & Chang, L. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol. 17, 387–393 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, B. et al. Mechanistic insights into the R-loop formation and cleavage in CRISPR–Cas12i1. Nat. Commun. 12, 3476 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pausch, P. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, A. et al. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation. Cell Res. 33, 229–244 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omura, S. N. et al. Mechanistic and evolutionary insights into a type V-M CRISPR–Cas effector enzyme. Nat. Struct. Mol. Biol. 30, 1172–1182 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586.e16 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Duan, Z. et al. Structure and genome editing activity of the novel CRISPR–Cas12o1 effector. Cell Res. 35, 145–148 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Sasnauskas, G. et al. TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature 616, 384–389 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Chamberlin, M. Isolation and characterization of prototrophic mutants of Escherichia coli unable to support the intracellular growth of T7. J. Virol. 14, 509–516 (1974).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamdan, S. M. et al. A unique loop in T7 DNA polymerase mediates the binding of helicase–primase, DNA binding protein, and processivity factor. Proc. Natl Acad. Sci. USA 102, 5096–5101 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  • Omidi, A., Møller, M. H., Malhis, N., Bui, J. M. & Gsponer, J. AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions. Proc. Natl Acad. Sci. USA 121, e2406407121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, C. J., Choy, W.-Y. & Karttunen, M. AlphaFold2: a role for disordered protein/region prediction?. Int. J. Mol. Sci. 23, 4591 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, N. & Ji, Q. Miniature CRISPR–Cas12 systems: mechanisms, engineering, and genome editing applications. ACS Chem. Biol. 19, 1399–1408 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, W. Y., Adiego-Pérez, B. & Van Der Oost, J. Biology and applications of CRISPR–Cas12 and transposon-associated homologs. Nat. Biotechnol. 42, 1807–1821 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Chen, W. et al. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Mol. Cell 83, 2768–2780.e6 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bland, C. et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 13, 6968 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, D., Chojnowski, G., Rosenthal, M. & Kosinski, J. AlphaPulldown—a Python package for protein–protein interaction screens using AlphaFold-Multimer. Bioinformatics 39, btac749 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. CRISPR–Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl. Environ. Microbiol. 84, e01834–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. A highly efficient CRISPR–Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H2O2-sensing mechanism of OxyR. Cell Chem. Biol. 26, 1732–1742.e5 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, J. et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat. Commun. 14, 2928 (2023).

  • He, Y. & Chen, J. CRISPR–Cas9-mediated genome editing of T4 bacteriophage for high-throughput antimicrobial susceptibility testing. Anal. Chem. 96, 18301–18310 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

Continue Reading

  • Oxford Bus Company reveals list of unusual lost property

    Oxford Bus Company reveals list of unusual lost property

    The company said that about a quarter of the lost property had been reunited with its owners.

    “Misplacing a personal item can be a stressful experience, so we use technology to help make it easier for people to get their belongings back,” said Andy Morison, the firm’s head of digital and customer experience.

    “We encourage people who misplace their items to use our NotLost service via the website which has helped us effectively manage lost property and minimise stress to affected passengers.”

    Passengers who reclaim items pay a £1 administration and storage fee, with a postal return option also available.

    Items left behind in previous years have included a bar stool, a Donald Trump toilet roll and a letter detailing unusual fantasies.

    Last year a suitcase full of retro adult magazines topped the list.

    Continue Reading

  • Belgian venue operator Be•at sells more than three million tickets for first time

    Belgian venue operator Be•at sells more than three million tickets for first time

    Belgian live entertainment company be•at, which operates major venues including the AFAS Dome (formerly the Sportpaleis), Lotto Arena and Forest National, sold more than three million tickets in 2025 for the first time, the company said. Ticket…

    Continue Reading

  • ASUS Intros Pro WS B850M-ACE SE Motherboard with IPMI for Home and SMB Servers

    ASUS Intros Pro WS B850M-ACE SE Motherboard with IPMI for Home and SMB Servers

    ASUS introduced the Pro WS B850M-ACE SE, an AMD Socket AM5 motherboard in the microATX form-factor that’s laid out like a server motherboard, but targets a range of consumers spanning from home and small-business servers, to workstations with…

    Continue Reading

  • Ultrasensitive X-ray detection enabled by graphene/perovskite heterostructures

    Researchers from Dongguan University of Technology have developed a high-performance X-ray detector based on a graphene/perovskite heterostructure, addressing the limitations of traditional perovskite detectors that suffer from charge…

    Continue Reading

  • Our experts have found the best New Year deals on OLED TVs, stereo speakers, Dolby Atmos soundbars and more

    Our experts have found the best New Year deals on OLED TVs, stereo speakers, Dolby Atmos soundbars and more

    Happy New Year from all of us at What Hi-Fi?.

    Whether you’ve entered 2026 swinging or are still taking a well-deserved break, there are plenty of great deals around for you to peruse.

    Continue Reading