Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656 (1979).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).
Michiels, C., Tellier, C. & Feron, O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim. Biophys. Acta. 1866, 76–86 (2016).
Span, P. N. & Bussink, J. Biology of hypoxia. Semin Nucl. Med. 45, 101–109 (2015).
Tatum, J. L. et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int. J. Radiat. Biol. 82, 699–757 (2006).
Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer. 9, 539–549 (1955).
Vaupel, P. & Mayer, A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv. Exp. Med. Biol. 812, 19–24 (2014).
Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 3, 83–92 (2015).
Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175–180 (2016).
Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T. & Vu, V. T. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr. Mol. Med. 9, 442–458 (2009).
Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M. & Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev. 29, 297–307 (2003).
Walsh, J. C. et al. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 21, 1516–1554 (2014).
Brizel, D. M., Sibley, G. S., Prosnitz, L. R., Scher, R. L. & Dewhirst, M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 38, 285–289 (1997).
Brown, J. M. The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain memorial award lecture. Cancer Res. 59, 5863–5870 (1999).
Denny, W. A. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol. 6, 419–428 (2010).
Duan, J. X. et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem. 51, 2412–2420 (2008).
Hunter, F. W., Wouters, B. G. & Wilson, W. R. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br. J. Cancer. 114, 1071–1077 (2016).
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26, 341–352 (2007).
Patel, A. & Sant, S. Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnol. Adv. 34, 803–812 (2016).
Phillips, R. M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 77, 441–457 (2016).
Wigerup, C., Pahlman, S. & Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152–169 (2016).
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer. 11, 393–410 (2011).
Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986).
Oostveen, E. A. & Speckamp, W. N. Mitomycin Analogs.1. Indoloquinones as (Potential) bisalkylating agents. Tetrahedron 43, 255–262 (1987).
Patterson, A. V. et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Research: Official J. Am. Association Cancer Res. 13, 3922–3932 (2007).
Nishida, C. R. & de Ortiz, P. R. Reductive heme-dependent activation of the n-oxide prodrug AQ4N by nitric oxide synthase. J. Med. Chem. 51, 5118–5120 (2008).
Liu, Q. et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother. Pharmacol. 69, 1487–1498 (2012).
Patterson, A. V. et al. The hypoxia-activated EGFR-TKI TH-4000 overcomes erlotinib-resistance in preclinical NSCLC models at plasma levels achieved in a phase 1 clinical trial. Cancer Res. 75 (15_Supplement), 5358 (2015).
Patterson, A. V. et al. TH-4000, a hypoxia-activated EGFR/Her2 inhibitor to treat EGFR-TKI resistant T790M-negative NSCLC. J. Clin. Oncol. 33, e13548–e13548 (2015).
Abbattista, M. R. et al. Pre-clinical activity of PR-104 as monotherapy and in combination with Sorafenib in hepatocellular carcinoma. Cancer Biol. Ther. 16, 610–622 (2015).
Benito, J. et al. Hypoxia-Activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Research: Official J. Am. Association Cancer Res. 22, 1687–1698 (2016).
Del Rowe, J. et al. Single-arm, open-label phase II study of intravenously administered Tirapazamine and radiation therapy for glioblastoma multiforme. J. Clin. Oncol. 18, 1254–1259 (2000).
Konopleva, M. et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 100, 927–934 (2015).
Masunaga, S. et al. Usefulness of combined treatment with continuous administration of Tirapazamine and mild temperature hyperthermia in gamma-ray irradiation in terms of local tumour response and lung metastatic potential. Int. J. Hyperth. 28, 636–644 (2012).
Sun, J. D. et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Research: Official J. Am. Association Cancer Res. 18, 758–770 (2012).
Groshar, D. et al. Imaging tumor hypoxia and tumor perfusion. J. Nucl. Med. 34, 885–888 (1993).
Lee, C. T., Boss, M. K. & Dewhirst, M. W. Imaging tumor hypoxia to advance radiation oncology. Antioxid. Redox Signal. 21, 313–337 (2014).
Minn, H. et al. Imaging of tumor hypoxia to predict treatment sensitivity. Curr. Pharm. Design. 14, 2932–2942 (2008).
Pacheco-Torres, J., Lopez-Larrubia, P., Ballesteros, P. & Cerdan, S. Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 24, 1–16 (2011).
Reischl, G. et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J. Pharm. Pharm. Sciences: Publication Can. Soc. Pharm. Sci. Societe Canadienne des. Sci. Pharmaceutiques. 10, 203–211 (2007).
Vaupel, P. & Mayer, A. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 22, 878–880 (2015).
Baudelet, C. & Gallez, B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn. Reson. Med. 48, 980–986 (2002).
Ding, Y. et al. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J. Magn. Reson. Imaging. 38, 1230–1236 (2013).
O’Connor, J. P. et al. Oxygen-Enhanced MRI accurately Identifies, Quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res. 76, 787–795 (2016).
Gulaka, P. K. et al. GdDO3NI, a nitroimidazole-based T1 MRI contrast agent for imaging tumor hypoxia in vivo. J. Biol. Inorg. Chem. 19, 271–279 (2014).
Rojas-Quijano, F. A. et al. Synthesis and characterization of a hypoxia-sensitive MRI probe. Chemistry 18, 9669–9676 (2012).
Mason, R. P., Rodbumrung, W. & Antich, P. P. Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed. 9, 125–134 (1996).
Kodibagkar, V. D., Cui, W., Merritt, M. E. & Mason, R. P. Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn. Reson. Med. 55, 743–748 (2006).
Kodibagkar, V. D., Wang, X., Pacheco-Torres, J., Gulaka, P. & Mason, R. P. Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed. 21, 899–907 (2008).
Agarwal, S., Gulaka, P. K., Rastogi, U. & Kodibagkar, V. D. More bullets for PISTOL: linear and Cyclic siloxane reporter probes for quantitative (1)H MR oximetry. Sci. Rep. 10, 1399 (2020).
Hoehn-Berlage, M., Tolxdorff, T., Bockhorst, K., Okada, Y. & Ernestus, R. I. In vivo NMR T2 relaxation of experimental brain tumors in the cat: a multiparameter tissue characterization. Magn. Reson. Imaging. 10, 935–947 (1992).
Zhao, D., Jiang, L. & Mason, R. P. Measuring changes in tumor oxygenation. Methods Enzymol. 386, 378–418 (2004).
Dula, A. N., Gochberg, D. F., Valentine, H. L., Valentine, W. M. & Does, M. D. Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord. Magn. Reson. Med. 63, 902–909 (2010).
Harkins, K. D., Valentine, W. M., Gochberg, D. F. & Does, M. D. In-vivo multi-exponential T2, magnetization transfer and quantitative histology in a rat model of intramyelinic edema. Neuroimage Clin. 2, 810–817 (2013).
Stokes, A. M., Hart, C. P. & Quarles, C. C. Hypoxia imaging with PET correlates with antitumor activity of the Hypoxia-Activated prodrug Evofosfamide (TH-302) in rodent glioma models. Tomography 2, 229–237 (2016).
Takakusagi, Y. et al. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302. PLoS One. 9, e107995 (2014).
Cherk, M. H. et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J. Nucl. Med. 47, 1921–1926 (2006).
Piert, M. et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med. 46, 106–113 (2005).
Solomon, B. et al. Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol. Cancer Ther. 4, 1417–1422 (2005).
Lin, Y., Wang, X. & Jin, H. EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am. J. Cancer Res. 4, 411–435 (2014).
Choi, K., Creighton, C. J., Stivers, D., Fujimoto, N. & Kurie, J. M. Transcriptional profiling of non-small cell lung cancer cells with activating EGFR somatic mutations. PLoS One. 2, e1226 (2007).
Anderson, N. G., Ahmad, T., Chan, K., Dobson, R. & Bundred, N. J. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int. J. Cancer. 94, 774–782 (2001).
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 4, 437–447 (2004).
Wilson, W. R. et al. Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with Dinitrobenzamide mustards. Radiat. Res. 167, 625–636 (2007).
Arvold, N. D., Heidari, P., Kunawudhi, A., Sequist, L. V. & Mahmood, U. Tumor hypoxia response after targeted therapy in EGFR-Mutant Non-Small cell lung cancer: proof of concept for FMISO-PET. Technol. Cancer Res. Treat. 15, 234–242 (2016).
Bains, L. J., Baker, J. H., Kyle, A. H., Minchinton, A. I. & Reinsberg, S. A. Detecting vascular-targeting effects of the hypoxic cytotoxin Tirapazamine in tumor xenografts using magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 74, 957–965 (2009).
Baker, J. H. et al. Targeting the tumour vasculature: exploitation of low oxygenation and sensitivity to NOS Inhibition by treatment with a hypoxic cytotoxin. PLoS One. 8, e76832 (2013).
Huxham, L. A., Kyle, A. H., Baker, J. H., McNicol, K. L. & Minchinton, A. I. Tirapazamine causes vascular dysfunction in HCT-116 tumour xenografts. Radiother Oncol. 78, 138–145 (2006).
Huxham, L. A., Kyle, A. H., Baker, J. H., McNicol, K. L. & Minchinton, A. I. Exploring vascular dysfunction caused by Tirapazamine. Microvasc Res. 75, 247–255 (2008).




