Abbott, J. J., Diller, E. & Petruska, A. J. Magnetic methods in robotics. Annu. Rev. Control Robot Auton. Syst. 3, 57–90 (2020).
Google Scholar
Chen, X. Z. et al. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today. 9, 37–48 (2017).
Google Scholar
Xiao, Y., Zhang, J., Fang, B., Zhao, X. & Hao, N. Acoustics-Actuated Microrobots Micromachines 13, 481 (2022).
Google Scholar
Kim, H. & Kim, M. J. Electric field control of Bacteria-Powered microrobots using a static obstacle avoidance algorithm. IEEE Trans. Robot. 32, 125–137 (2016).
Google Scholar
Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).
Google Scholar
Doutel, E. & Galindo-Rosales, F. J. Campo-Deaño, L. Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs. Materials 14, 7402 (2021).
Google Scholar
Hu, M. et al. Micro/Nanorobot: A promising targeted drug delivery system. Pharmaceutics 12, 665 (2020).
Google Scholar
Jang, D., Jeong, J., Song, H. & Chung, S. K. Targeted drug delivery technology using untethered microrobots: a review. J. Micromech Microeng. 29, 053002 (2019).
Google Scholar
Yang, M. et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 9, eadk7251 (2023).
Google Scholar
Wang, S. et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204 (2020).
Google Scholar
Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U.S.A. 104, 1482–1487 (2007).
Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).
Google Scholar
Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).
Google Scholar
Tasci, T. O., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7, 10225 (2016).
Google Scholar
Zimmermann, C. J., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Multimodal microwheel swarms for targeting in three-dimensional networks. Sci. Rep. 12, 5078 (2022).
Google Scholar
Ishiki, A. K., Neeves, K. B. & Marr, D. W. M. Reversible microwheel translation induced by polymer depletion. Langmuir 39, 15547–15552 (2023).
Google Scholar
Wolvington, E., Yeager, L., Gao, Y., Zimmermann, C. J. & Marr, D. W. M. Paddlebots: translation of rotating colloidal assemblies near an Air/Water interface. Langmuir 39, 7846–7851 (2023).
Google Scholar
Tasci, T. O. et al. Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 13, 1700954 (2017).
Google Scholar
Disharoon, D., Trewyn, B. G., Herson, P. S., Marr, D. W. M. & Neeves, K. B. Breaking the fibrinolytic speed limit with microwheel co-delivery of tissue plasminogen activator and plasminogen. J. Thromb. Haemost. 20, 486–497 (2022).
Google Scholar
Pontius, M. H. H. et al. Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 121, e2315083121 (2024).
Osmond, M. J. et al. Micrometer-scale tPA beads amplify plasmin generation for enhanced thrombolytic therapy. Bioeng. Transla Med. e70012 (2025). https://doi.org/10.1002/btm2.70012
Ota, S. & Takemura, Y. Characterization of Néel and brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles. J. Phys. Chem. C. 123, 28859–28866 (2019).
Google Scholar
Joshi, R., Jadhao, M. & Ghosh, S. K. Recent trends in the applications of nanocomposites in cancer theranostics. Green. Sustainable Process. Chem. Environ. Eng. Sci. (Elsevier), 283–320. https://doi.org/10.1016/B978-0-323-95169-2.00011-0 (2023).
Koleoso, M. et al. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio.. 8, 100085 (2020).
Google Scholar
Rajan, A. & Sahu, N. K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 22, 319 (2020).
Google Scholar
Park, J., Jin, C., Lee, S., Kim, J. & Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8, 1900213 (2019).
Google Scholar
Landers, F. C. et al. On-Command disassembly of microrobotic superstructures for transport and delivery of magnetic micromachines. Adv. Mater. 36, 2310084 (2024).
Google Scholar
Rajabimashhadi, Z., Gallo, N., Salvatore, L. & Lionetto, F. Collagen derived from fish industry waste: progresses and challenges. Polymers 15, 544 (2023).
Google Scholar
Wagner, C. E., Wheeler, K. M. & Ribbeck, K. Mucins and their role in shaping the functions of mucus barriers. Annu. Rev. Cell. Dev. Biol. 34, 189–215 (2018).
Google Scholar
Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).
Google Scholar
Kol, R. et al. Toward more universal prediction of polymer solution viscosity for Solvent-Based recycling. Ind. Eng. Chem. Res. 61, 10999–11011 (2022).
Google Scholar
Al-Shammari, B., Al-Fariss, T., Al-Sewailm, F. & Elleithy, R. The effect of polymer concentration and temperature on the rheological behavior of metallocene linear low density polyethylene (mLLDPE) solutions. J. King Saud Univ. – Eng. Sci. 23, 9–14 (2011).
Google Scholar
Harding, S. E. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog. Biophys. Mol. Biol. 68, 207–262 (1997).
Google Scholar
de la García, J. & Hernández Cifre, J. G. Hydrodynamic properties of biomacromolecules and macromolecular complexes: concepts and Methods. A tutorial Mini-review. J. Mol. Biol. 432, 2930–2948 (2020).
Google Scholar
Liu, M., Zhang, J., Shan, W. & Huang, Y. Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci. 10, 275–282 (2015).
Google Scholar
Ponchel, G. Specific and non-specific bioadhesive particulate systems for oral delivery to the Gastrointestinal tract. Adv. Drug Deliv. Rev. 34, 191–219 (1998).
Google Scholar
Hanlon, D. F., Clouter, M. J. & Andrews, G. T. Temperature dependence of the viscoelastic properties of a natural gastropod mucus by Brillouin light scattering spectroscopy. Soft. Matter.. 19, 8101–8111 (2023).
Google Scholar
Çinar, Y. Blood viscosity and blood pressure: role of temperature and hyperglycemia. Am. J. Hypertens. 14, 433–438 (2001).
Google Scholar
Hasnain, S. et al. Knee synovial fluid flow and heat transfer, a power law model. Sci. Rep. 13, 18184 (2023).
Google Scholar
Penconek, A., Michalczuk, U., Sienkiewicz, A. & Moskal, A. The effect of desert dust particles on rheological properties of saliva and mucus. Environ. Sci. Pollut Res. 26, 12150–12157 (2019).
Google Scholar
Gavilán, H. et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50, 11614–11667 (2021).
Google Scholar
Fonnum, G., Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).
Google Scholar
Shah, R. R. et al. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model. Mater. Sci. Engineering: C. 68, 18–29 (2016).
Google Scholar
Liu, X. et al. Comprehensive Understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10, 3793–3815 (2020).
Google Scholar
Johannsen, M. et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005).
Google Scholar
Kouzoudis, D., Samourgkanidis, G., Kolokithas-Ntoukas, A., Zoppellaro, G. & Spiliotopoulos, K. Magnetic hyperthermia in the 400–1,100 kHz frequency range using mions of condensed colloidal nanocrystal clusters. Front. Mater. 8, 638019 (2021).
Google Scholar
Lai, S. K., Wang, Y. Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009).
Google Scholar
Yang, L. & Zhang, L. Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu. Rev. Control Robot Auton. Syst. 4, 509–534 (2021).
Google Scholar
Seneterre, E., Paganin, F., Bruel, J., Michel, F. & Bousquet, J. Measurement of the internal size of bronchi using high resolution computed tomography (HRCT). Eur. Respir J. 7, 596–600 (1994).
Google Scholar
Bosetti, F. et al. Small Blood Vessels: Big Health Problems? Scientific Recommendations of the National Institutes of Health Workshop. JAHA 5, e004389 (2016).
Cunha, L. H. P. et al. Slow relaxation dynamics of superparamagnetic colloidal beads in time-varying fields. Phys. Rev. Mater. 8, 105601 (2024).
Google Scholar
Erb, R. M., Martin, J. J., Soheilian, R., Pan, C. & Barber, J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26, 3859–3880 (2016).
Google Scholar
Kanwal, R. P. Slow rotatory motion of a circular disk about one of its diameters in a viscous fluid. J. Appl. Mech. 26, 485–487 (1959).
Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 2002).
Jeffery, G. B. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. s2_14, 327–338 (1915).
Google Scholar
Tanzosh, J. P. & Stone, H. A. Transverse motion of a disk through a rotating viscous fluid. J. Fluid Mech. 301, 295–324 (1995).
Google Scholar
Martínez-Padilla, L. P. Rheology of liquid foods under shear flow conditions: recently used models. J. Texture Stud. 55, e12802 (2024).
Google Scholar
Serio, F. et al. Co-loading of doxorubicin and iron oxide nanocubes in Polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. J. Colloid Interface Sci. 607, 34–44 (2022).
Google Scholar
Zimmermann, C. J. et al. Delivery and actuation of aerosolized microbots. Nano Select Nano. 202100353 https://doi.org/10.1002/nano.202100353 (2022).
Balsamo, R., Lanata, L. & Egan, C. G. Mucoactive drugs. Eur. Respir Rev. 19, 127–133 (2010).
Google Scholar
Andreu, I. & Natividad, E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 29, 739–751 (2013).
Google Scholar
Deatsch, A. E. & Evans, E. E. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014).
Google Scholar
Zimmermann, C. czimm79/MuControl: v1.1.1 – DOI generation. Zenodo https://doi.org/10.5281/ZENODO.5793922 (2021).
Google Scholar