Madagascar is widely recognized for its extraordinary variety of chameleons. More than 40% of all species known worldwide live on this island off the East African coast. Among them is the so called Pinocchio chameleon, a reptile described for…
Author: admin
-

Abdullah bin Zayed, Chinese Foreign Minister affirm depth of Comprehensive Strategic Partnership between two countries in joint statement
At the invitation of H.H. Sheikh Abdullah bin Zayed Al Nahyan, Deputy Prime Minister and Minister of Foreign Affairs, Member of the Political Bureau of the CPC Central Committee and Foreign Minister of the People’s Republic of China, paid…
Continue Reading
-

Veronica Wiggins Named to 2026 NFCA Hall of Fame
LAS VEGAS — Legendary Florida A&M head coach Veronica Wiggins let the Rattlers’ softball program from 1990-2020….
Continue Reading
-
Legal community an important pillar of state: PM – RADIO PAKISTAN
- Legal community an important pillar of state: PM RADIO PAKISTAN
- Govt-backed group cements its hold on PBC The Express Tribune
- Pakistan Bar Council polls: Asma Jahangir Group secures majority in Punjab samaa tv
- Lanjar congratulates Asma Jahangir…
Continue Reading
-

A long-nosed chameleon hid its true identity for 150 years
Madagascar is widely recognized for its extraordinary variety of chameleons. More than 40% of all species known worldwide live on this island off the East African coast. Among them is the so called Pinocchio chameleon, a reptile described for…
Continue Reading
-

Lagos’ first street art festival turns city into ‘open-air gallery’
Toyin Adedokun / AFP via Getty ImagesParts of Nigeria’s biggest city, Lagos, have been turned into an “open-air gallery”, in the words of the organisers of the city’s first street art festival.
One of the featured artists, Ashaolu Oluwafemi, told…
Continue Reading
-

Maine wraps up Fall Semester with a win in Black Bear Invitational
ORONO, Maine – The University of Maine track and field program hosted their Black Bear Invitational meet on…
Continue Reading
-
Percolation effect induced significant changes in the complex permittivity and permeability of silver-epoxy nano-composites
Gao, X., Yang, M., Pereira, A., Guo, S. & Zhang, H. Simulation calculation of selective reflective films based on metamaterials and prediction of color in light filter with machine learning. Eng. Sci. https://doi.org/10.30919/es1158 (2024).
Sahin, S., Nahar, N. K. & Sertel, K. Dielectric properties of Low-Loss polymers for MmW and THz applications. J. Infrared Millim. Terahertz Waves. 40(5), 557–573. https://doi.org/10.1007/s10762-019-00584-2 (2019).
Cava, R. F., Peck, W. F. & Krajewski, J. J. Enhancement of the dielectric constant of Ta2O5 through substitude with TiO2. Nature 377, 21 (1995).
Kawarasaki, M., Tanabe, K., Terasaki, I., Fujii, Y. & Taniguchi, H. Intrinsic enhancement of dielectric permittivity in (Nb + In) co-doped TiO(2) single crystals. Sci. Rep. 7(1), 5351. https://doi.org/10.1038/s41598-017-05651-z (2017).
Sebastian, M. T., Ubic, R. & Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412. https://doi.org/10.1179/1743280415y.0000000007 (2015).
Webb, A., Shchelokova, A., Slobozhanyuk, A., Zivkovic, I. & Schmidt, R. Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGMA 3(6), 875–894. https://doi.org/10.1007/s10334-022-01007-5 (2022).
Watanabe, A. O., Ali, M., Sayeed, S. Y. B., Tummala, R. R. & Raj, P. M. A review of 5G Front-End systems package integration. IEEE Trans. Compon. Packag Manuf. Technol., 118 11 (2020).
Li, J. & Ghalichechian, N. Suspended Highly-efficient On-chip Phased Array Antenna at 60 GHz, presented at the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, (2019).
Popa, B. I. & Cummer, S. A. Compact dielectric particles as a Building block for low-loss magnetic metamaterials. Phys. Rev. Lett., 100(20), 207401, 2008, https://doi.org/10.1103/PhysRevLett.100.207401
Felix, N., Tran-Huu-Hue, L. P., Walker, L., Millar, C. & Lethiecq, M. The application of high permittivity piezoelectric ceramics to 2D array transducers for medical imaging. Ultrasonics 38, 1–8 (2000).
Chen, W. et al. Tunable ultrahigh dielectric constant (tuHDC) ceramic technique to largely improve RF coil efficiency and MR imaging performance. IEEE Trans. Med. Imaging. 39(10), 3187–3197. https://doi.org/10.1109/TMI.2020.2988834 (2020).
Rong, C., Yan, L., Li, L., Li, Y. & Liu, M. Rev. Metamaterials Wirel. Power Transf. Mater. (Basel), https://doi.org/10.3390/ma16176008. (2023).
Lee, W. & Yoon, Y. K. Wireless power transfer systems using metamaterials: A review. IEEE Access. 8, 147930–147947. https://doi.org/10.1109/access.2020.3015176 (2020).
Li, F. et al. Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation. Appl. Energy. https://doi.org/10.1016/j.apenergy.2022.119631 (2022).
Wang, B. et al. Wirel. Power Transf. Metamaterials Presented EUCAP (2011).
Peev, D., Kolev, N. & Sivkov, Y. Stratified Layer Composite Material for Radar Anti-reflective Coating, presented at the 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA) (2022).
Huang, J. Y., Fei, G. T., Xu, S. H. & Wang, B. ZnO–SiO2 composite coating with anti-reflection and photoluminescence properties for improving the solar cell efficiency. Compos. Part. B: Eng. 251 https://doi.org/10.1016/j.compositesb.2022.110486 (2023).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966 (2000).
Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics (2007).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Phys. Uspekhi, 10, 4 (1968).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305(5685), 788–792. https://doi.org/10.1126/science.1096796 (2004).
Navarro-Cía, M., Akmansoy, E., Marcellin, S. & Han, J. Negative index and mode coupling in all-dielectric metamaterials at Terahertz frequencies, EPJ Applied Metamaterials, 5, (2018). https://doi.org/10.1051/epjam/2018006
Suzuki, T., Sekiya, M., Sato, T. & Takebayashi, Y. Negative refractive index metamaterial with high transmission, low reflection, and low loss in the Terahertz waveband. Opt. Express. 26(7), 8314–8324. https://doi.org/10.1364/OE.26.008314 (2018).
Padilla, W. J., Basov, D. N. & Smith, D. R. Negative refractive index metamaterials. Mater. Today. 9, 7–8. https://doi.org/10.1016/s1369-7021(06)71573-5 (2006).
Yao, H. Y., Lin, Y. W. & Chang, T. H. Dielectric properties of BaTiO(3)-epoxy nanocomposites in the microwave regime. Polymers (2021). https://doi.org/10.3390/polym13091391
Broadbent, S. R. & Hammersley, J. M. Percolation processes I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641. https://doi.org/10.1017/s0305004100032680 (1957).
Bergman, D. J. & Imry, Y. Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material. Phys. Rev. Lett. 39, 1222–1225. https://doi.org/10.1103/PhysRevLett.39.1222 (1977).
Stephen, M. A. Magnetic susceptibility of percolating clusters. Phys. Lett. 87A(1), 2 (1981).
Bowman, D. R. & Stroud, D. Divergent diamagnetism in superconducting and normal metal composites near the percolation threshold. Phys. Rev. Lett. 52(4), 299–302. https://doi.org/10.1103/PhysRevLett.52.299 (1984).
Lagar’kov, A. N., Panina, L. V. & Sarychev, A. K. Effective Magnetic Permeability of Composite Materials Near the Percolation Threshold. MRS Proceedings (1991). https://doi.org/10.1557/proc-232-195
Su, S. C. & Chang, T. H. Manipulating the permittivities and permeabilities of epoxy/silver nanocomposites over a wide bandwidth. Appl. Phys. Lett. https://doi.org/10.1063/5.0006835 (2020).
Stauffer, D. & Aharony, A. Introduction To Percolation Theory (Taylor & Francis, 1992).
Nan, C. W. Physics of inhomogeneous inorganic materials. Prog Mater. Sci. (1993).
Meloni, M. et al. Explosive percolation yields highly-conductive polymer composites. Nat. Commun. 13, 7463. https://doi.org/10.1038/s41467-022-34631-9 (2022).
Liu, X. et al. Nanoparticle geometry effects on percolation in Ni–Fe/PEEK. Phys. Rev. B 106, 224417. https://doi.org/10.1103/PhysRevB.106.224417
Shi, G., Sun, X. & Liu, Y. Percolation-Triggered negative permittivity in nano carbon Powder/Polyvinylidene fluoride composites. Molecules https://doi.org/10.3390/molecules29163862 (2024).
Chang, C. H., Su, S. C., Chang, T. H. & Chang, C. R. Frequency-induced negative magnetic susceptibility in epoxy/magnetite nanocomposites. Sci. Rep. https://doi.org/10.1038/s41598-021-82590-w (2021).
Wu, Z. et al. Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with Silica@Multi-walled carbon nanotubes and Boron nitride. ES Mater. Manuf. https://doi.org/10.30919/esmm5f847 (2023).
Harris, A. B. Field-theoretic approach to biconnectedness in percolating systems. Phys. Rev. B. 28(5), 2614–2629. https://doi.org/10.1103/PhysRevB.28.2614 (1983).
Wang, L., Bai, Y., Lu, X., Cao, J. L. & Qiao, L. J. Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity. Sci. Rep. 5, 7580. https://doi.org/10.1038/srep07580 (2015).
Shehzad, K. et al. Two percolation thresholds and remarkably high dielectric permittivity in pristine carbon nanotube/elastomer composites .App. Nanosci. 5(8), 969–974. https://doi.org/10.1007/s13204-015-0403-0 (2015).
Karpov, V. G., Serpen, G. & Patmiou, M. Percolation with plasticity for neuromorphic systems. J. Physics: Complex. 1(3), 035009 (2020).
Dlamini, Z. W. et al. Resistive switching in Polyvinylpyrrolidone/Molybdenum disulfide Composite-Based memory devices. Acta Phys. Pol., A. 141(5), 439–444. https://doi.org/10.12693/APhysPolA.141.439 (2022).
Park, J. et al. Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer. Nat. Commun. 13(1), 5233. https://doi.org/10.1038/s41467-022-32966-x (2022).
Continue Reading
-
President felicitates Sultan Golden for setting new world record in reverse driving – RADIO PAKISTAN
- President felicitates Sultan Golden for setting new world record in reverse driving RADIO PAKISTAN
- Pakistan’s Sultan Golden sets world records for fastest reverse drive, ramp jump Geo News
- Stuntman Sultan Golden breaks world record for fastest…
Continue Reading
