Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).
Google Scholar
Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).
Google Scholar
Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).
Google Scholar
Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A. Genetic programs constructed from layered logic gates in single cells. Nature 491, 249–253 (2012).
Google Scholar
Del Vecchio, D., Abdallah, H., Qian, Y. & Collins, J. J. A blueprint for a synthetic genetic feedback controller to reprogram cell fate. Cell Syst. 4, 109–120.e11 (2017).
Google Scholar
Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).
Google Scholar
Huang, H.-H., Qian, Y. & Del Vecchio, D. A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat. Commun. 9, 5415 (2018).
Google Scholar
Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).
Google Scholar
Frei, T., Chang, C.-H., Filo, M., Arampatzis, A. & Khammash, M. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. Proc. Natl. Acad. Sci. 119, e2122132119 (2022).
Google Scholar
Gyorgy, A., Menezes, A. & Arcak, M. A blueprint for a synthetic genetic feedback optimizer. Nat. Commun. 14, 2554 (2023).
Google Scholar
Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).
Google Scholar
Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).
Google Scholar
Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).
Google Scholar
Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1, 514–525 (2012).
Google Scholar
Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).
Google Scholar
Pedrolli, D. B. et al. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37, 100–115 (2019).
Google Scholar
Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).
Google Scholar
Scown, C. D. & Keasling, J. D. Sustainable manufacturing with synthetic biology. Nat. Biotechnol. 40, 304–307 (2022).
Google Scholar
Gyorgy, A. et al. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109, 639–646 (2015).
Google Scholar
Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).
Google Scholar
Yeung, E. et al. Biophysical constraints arising from compositional context in synthetic gene networks. Cell Syst. 5, 11–24.e12 (2017).
Google Scholar
Castle, S. D., Grierson, C. S. & Gorochowski, T. E. Towards an engineering theory of evolution. Nat. Commun. 12, 3326 (2021).
Google Scholar
Santos-Moreno, J., Tasiudi, E., Kusumawardhani, H., Stelling, J. & Schaerli, Y. Robustness and innovation in synthetic genotype networks. Nat. Commun. 14, 2454 (2023).
Google Scholar
Randall, A., Guye, P., Gupta, S., Duportet, X. & Weiss, R. Chapter seven – design and connection of robust genetic circuits. In Voigt, C. (ed.) Synthetic Biology, Part A, vol. 497 of Methods in Enzymology, 159–186 (Academic Press, 2011).
Wagner, A. Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275, 91–100 (2008).
Google Scholar
Giver, L., Gershenson, A., Freskgard, P.-O. & Arnold, F. H. Directed evolution of a thermostable esterase. PNAS 95, 12809–12813 (1998).
Google Scholar
Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. 99, 16587–16591 (2002).
Google Scholar
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).
Google Scholar
Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).
Google Scholar
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli “marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).
Google Scholar
Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12 (2010).
Google Scholar
Chlebek, J. L. et al. Prolonging genetic circuit stability through adaptive evolution of overlapping genes. Nucleic Acids Res. 51, 7094–7108 (2023).
Google Scholar
Kumar, S. & Hasty, J. Stability, robustness, and containment: preparing synthetic biology for real-world deployment. Curr. Opin. Biotechnol. 79, 102880 (2023).
Google Scholar
Glass, D. S., Bren, A., Vaisbourd, E., Mayo, A. & Alon, U. A synthetic differentiation circuit in Escherichia coli for suppressing mutant takeover. Cell 187, 931–944.e12 (2024).
Google Scholar
Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millan, A. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).
Google Scholar
Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).
Google Scholar
Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).
Google Scholar
Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 53, 2227–2238 (2009).
Google Scholar
Brinkmann, H., Göker, M., Koblížek, M., Wagner-Döbler, I. & Petersen, J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 12, 1994–2010 (2018).
Google Scholar
Manzano-Marin, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).
Google Scholar
San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016).
Google Scholar
Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).
Google Scholar
Molina, R. S. et al. In vivo hypermutation and continuous evolution. Nat. Rev. Methods Prim. 2, 36 (2022).
Google Scholar
Ravikumar, A., Arzumanyan, G. A., Obadi, M. K., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957.e13 (2018).
Google Scholar
Moore, C. L., Papa, L. J. & Shoulders, M. D. A processive protein chimera introduces mutations across defined DNA regions in vivo. J. Am. Chem. Soc. 140, 11560–11564 (2018).
Google Scholar
Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).
Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection. Clarendon Press: Oxford, 1930.
Google Scholar
Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).
Google Scholar
Halleran, A. D., Flores-Bautista, E. & Murray, R. M. Quantitative characterization of random partitioning in the evolution of plasmid-encoded traits. Preprint at: https://doi.org/10.1101/594879 (2019).
Rossine, F., Sanchez, C., Eaton, D., Paulsson, J. & Baym, M. Intracellular competition shapes plasmid population dynamics. Science 390, 1253–1264 (2025).
Loveless, T. B. et al. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat. Chem. Biol. 17, 739–747 (2021).
Google Scholar
Segall-Shapiro, T. H., Sontag, E. D. & Voigt, C. A. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36, 352–358 (2018).
Google Scholar
Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
Google Scholar
Gerland, U. & Hwa, T. Evolutionary selection between alternative modes of gene regulation. Proc. Natl. Acad. Sci. 106, 8841–8846 (2009).
Google Scholar
Marciano, D. C. et al. Negative feedback in genetic circuits confers evolutionary resilience and capacitance. Cell Rep. 7, 1789–1795 (2014).
Google Scholar
Gyorgy, A. Competition and evolutionary selection among core regulatory motifs in gene expression control. Nat. Commun. 14, 8266 (2023).
Google Scholar
Dublanche, Y., Michalodimitrakis, K., Kümmerer, N., Foglierini, M. & Serrano, L. Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. 2, 41 (2006).
Google Scholar
Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).
Google Scholar
Igler, C., Lagator, M., Tkacik, G., Bollback, J. P. & Guet, C. C. Evolutionary potential of transcription factors for gene regulatory rewiring. Nat. Ecol. Evol. 2, 1633–1643 (2018).
Google Scholar
Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. PNAS 117, 15755–15762 (2020).
Google Scholar
Cameron, P. et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat. Methods 14, 600–606 (2017).
Google Scholar
Klein, M., Eslami-Mossallam, B., Arroyo, D. G. & Depken, M. Hybridization kinetics explains CRISPR-Cas off-targeting rules. Cell Rep. 22, 1413–1423 (2018).
Google Scholar
Pattanayak, V. et al. High-throughput profiling of off-target dna cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).
Google Scholar
Jones, D. L. et al. Kinetics of dcas9 target search in Escherichia coli. Science 357, 1420–1424 (2017).
Google Scholar
Savageau, M. A. GenetiC Regulatory Mechanisms And The Ecological Niche of Escherichia coli. PNAS 71, 2453–2455 (1974).
Google Scholar
Savageau, M. A. Design of molecular control mechanisms and the demand for gene expression. PNAS 74, 5647–5651 (1977).
Google Scholar
Savageau, M. A. Demand theory of gene regulation. I. Quantitative development of the theory. Genetics 149, 1665–1676 (1998).
Google Scholar
Shinar, G., Dekel, E., Tlusty, T. & Alon, U. Rules for biological regulation based on error minimization. PNAS 103, 3999–4004 (2006).
Google Scholar
Gerland, U. & Hwa, T. Evolutionary selection between alternative modes of gene regulation. PNAS 106, 8841–8846 (2009).
Google Scholar
Schaerli, Y. et al. Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Mol. Syst. Biol. 14, e8102 (2018).
Google Scholar
Jiménez, A., Cotterell, J., Munteanu, A. & Sharpe, J. Dynamics of gene circuits shapes evolvability. Proc. Natl. Acad. Sci. 112, 2103–2108 (2015).
Google Scholar
Helenek, C. et al. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chem. Biol. 31, 1447–1459 (2024).
Google Scholar
Mihajlovic, L. et al. A direct experimental test of Ohno’s hypothesis. eLife 13, RP97216 (2023).
Google Scholar
Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).
Google Scholar
Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).
Google Scholar
Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20, 262–267 (2012).
Google Scholar
Rouches, M. V., Xu, Y., Cortes, L. B. G. & Lambert, G. A plasmid system with tunable copy number. Nat. Commun. 13, 3908 (2022).
Google Scholar
Thieffry, D., Huerta, A. M., Pérez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440 (1998).
Google Scholar
Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).
Google Scholar
Backwell, L. & Marsh, J. A. Diverse molecular mechanisms underlying pathogenic protein mutations: Beyond the loss-of-function paradigm. Annu. Rev. Genom. Hum. Genet. 23, 475–498 (2022).
Google Scholar
Billiard, S., Castric, V. & Llaurens, V. The integrative biology of genetic dominance. Biol. Rev. 96, 2925–2942 (2021).
Google Scholar
Shepherd, M. J., Pierce, A. P. & Taylor, T. B. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity. PLOS Biol. 21, e3002348 (2023).
Google Scholar
Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).
Google Scholar
Tian, R. et al. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 383, 421–426 (2024).
Google Scholar
Rix, G. et al. Continuous evolution of user-defined genes at 1 million times the genomic mutation rate. Science 386, eadm9073 (2024).
Google Scholar
Chure, G. et al. Predictive shifts in free energy couple mutations to their phenotypic consequences. Proc. Natl. Acad. Sci. 116, 18275–18284 (2019).
Google Scholar
Tack, D. S. et al. The genotype-phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10847 (2021).
Google Scholar
Joshi, S. H.-N., Yong, C. & Gyorgy, A. Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. Nat. Commun. 13, 6691 (2022).
Google Scholar
Kumar, P. & Libchaber, A. Pressure and temperature dependence of growth and morphology of Escherichia coli: experiments and stochastic model. Biophys. J. 105, 783–793 (2013).
Google Scholar
Paulsson, J. & Ehrenberg, M. Molecular clocks reduce plasmid loss rates: the r1 case. J. Mol. Biol. 297, 179–192 (2000).
Google Scholar
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli k-12 using pcr products. Proc. Natl. Acad. Sci. 97, 6640–6645 (2000).
Google Scholar
Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9-mediated genome editing. Metab. Eng. 31, 13–21 (2015).
Google Scholar
Sambrook, J. & Russell, D. W. Molecular Cloning: a Laboratory Manual, 3rd edn (Cold Spring Harbor Laboratory Press, 2001).
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).
Google Scholar
Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Pääbo, S. Improved grna secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nat. Commun. 13, 489 (2022).
Google Scholar
Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).
Google Scholar
Castillo-Hair, S. M. et al. Flowcal: a user-friendly, open source software tool for automatically converting flow cytometry data from arbitrary to calibrated units. ACS Synth. Biol. 5, 774–780 (2016).
Google Scholar
Krašovec, R. et al. Measuring microbial mutation rates with the fluctuation assay. J. Vis. Exp. 60406 (2019).
Mazoyer, A., Drouilhet, R., Despréaux, S. & Ycart, B. flan: an R Package for inference on mutation models. R. J. 9, 334–351 (2017).
Google Scholar
Verrou, K.-M., Pavlopoulos, G. A. & Moulos, P. Protocol for unbiased, consolidated variant calling from whole exome sequencing data. STAR Protoc. 3, 101418 (2022).
Google Scholar
Zouein, A., Lende-Dorn, B., Galloway, K. E., Ellis, T. & Ceroni, F. Engineered transcription factor-binding arrays for dna-based gene expression control in mammalian cells. Trends Biotechnol. 43, 2029–2048 (2025).
Lee, T. & Maheshri, N. A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Mol. Syst. Biol. 8, 576 (2012).
Google Scholar
Lee, J. W. et al. Creating single-copy genetic circuits. Mol. Cell 63, 329–336 (2016).
Google Scholar