Bezek, L. B. et al. Effect of part size, displacement rate, and aging on compressive properties of elastomeric parts of different unit cell topologies formed by vat photopolymerization additive manufacturing. Polymers 16, 3166 (2024).
Google Scholar
Yang, L. et al. Additive manufacturing of metal cellular structures: design and fabrication. Jom 67, 608–615 (2015).
Google Scholar
Lin, H. et al. 3d printing of porous ceramics for enhanced thermal insulation properties. Adv. Sci. 12, 2412554 (2025).
Google Scholar
Schaedler, T. A. et al. Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16, 276–283 (2014).
Google Scholar
Schaedler, T. A. & Carter, W. B. Architected cellular materials. Annual Rev. Mater. Res. 46, 187–210 (2016).
Google Scholar
Boursier Niutta, C., Ciardiello, R. & Tridello, A. Experimental and numerical investigation of a lattice structure for energy absorption: application to the design of an automotive crash absorber. Polymers 14, 1116 (2022).
Google Scholar
Mohsenizadeh, M., Gasbarri, F., Munther, M., Beheshti, A. & Davami, K. Additively-manufactured lightweight metamaterials for energy absorption. Mater. Des. 139, 521–530 (2018).
Google Scholar
Uribe-Lam, E., Treviño-Quintanilla, C. D., Cuan-Urquizo, E. & Olvera-Silva, O. Use of additive manufacturing for the fabrication of cellular and lattice materials: a review. Mater. Manuf. Process. 36, 257–280 (2021).
Google Scholar
Mueller, J., Raney, J. R., Shea, K. & Lewis, J. A. Architected lattices with high stiffness and toughness via multicore-shell 3d printing. Adv.Mater. 30, 1705001 (2018).
Google Scholar
Lei, H. et al. Evaluation of compressive properties of slm-fabricated multi-layer lattice structures by experimental test and \(\mu\)-ct-based finite element analysis. Materi. Des. 169, 107685 (2019).
Google Scholar
Kumar, A., Collini, L., Daurel, A. & Jeng, J.-Y. Design and additive manufacturing of closed cells from supportless lattice structure. Additive Manuf. 33, 101168 (2020).
Google Scholar
Nakarmi, S. et al. The role of unit cell topology in modulating the compaction response of additively manufactured cellular materials using simulations and validation experiments. Model. Simul. Mater. Sci. Eng. 32, 055029 (2024).
Google Scholar
Nakarmi, S. et al. Mesoscale simulations and validation experiments of polymer foam compaction-volume density effects. Mater. Lett. 382, 137864 (2025).
Google Scholar
Xia, L. & Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in matlab. Struct. Multidisciplinary Optim. 52, 1229–1241 (2015).
Google Scholar
Radman, A., Huang, X. & Xie, Y. Topology optimization of functionally graded cellular materials. J. Mater. Sci. 48, 1503–1510 (2013).
Google Scholar
Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3d microarchitecture. Procd. National Acad. Sci. 111, 2453–2458 (2014).
Google Scholar
Nguyen, J., Park, S.-I. & Rosen, D. Heuristic optimization method for cellular structure design of light weight components. Int. J. Precision Eng. Manuf. 14, 1071–1078 (2013).
Google Scholar
Meier, T. et al. Obtaining auxetic and isotropic metamaterials in counterintuitive design spaces: an automated optimization approach and experimental characterization. npj Comput. Mater. 10, 3 (2024).
Google Scholar
Vangelatos, Z. et al. Strength through defects: A novel bayesian approach for the optimization of architected materials. Sci. Adv. 7, eabk2218 (2021).
Google Scholar
Ramesh, A. et al. Zero-shot text-to-image generation. In International conference on machine learning, 8821–8831 (Pmlr, 2021).
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251, 3 (2022).
Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).
Google Scholar
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).
Google Scholar
Zhavoronkov, A. et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).
Google Scholar
Liao, W., Lu, X., Fei, Y., Gu, Y. & Huang, Y. Generative ai design for building structures. Autom. Construct. 157, 105187 (2024).
Google Scholar
Kingma, D. P., Welling, M. et al. Auto-encoding variational bayes (2013).
Goodfellow, I. J. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014).
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Google Scholar
Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 28 (2015).
Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021).
Google Scholar
Lee, D., Chen, W., Wang, L., Chan, Y.-C. & Chen, W. Data-driven design for metamaterials and multiscale systems: a review. Adv. Mater. 36, 2305254 (2024).
Google Scholar
Zheng, X., Zhang, X., Chen, T.-T. & Watanabe, I. Deep learning in mechanical metamaterials: from prediction and generation to inverse design. Adv. Mater. 35, 2302530 (2023).
Google Scholar
Wang, L. et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Methods App. Mech. Eng. 372, 113377 (2020).
Google Scholar
Zheng, L., Karapiperis, K., Kumar, S. & Kochmann, D. M. Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling. Nat. Commun. 14, 7563 (2023).
Google Scholar
Tian, J., Tang, K., Chen, X. & Wang, X. Machine learning-based prediction and inverse design of 2d metamaterial structures with tunable deformation-dependent poisson’s ratio. Nanoscale 14, 12677–12691 (2022).
Google Scholar
Zheng, X., Chen, T.-T., Guo, X., Samitsu, S. & Watanabe, I. Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 211, 110178 (2021).
Google Scholar
Challapalli, A., Patel, D. & Li, G. Inverse machine learning framework for optimizing lightweight metamaterials. Materi. Des. 208, 109937 (2021).
Google Scholar
Vlassis, N. N. & Sun, W. Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties. Comput. Methods Appl. Mech. Eng. 413, 116126 (2023).
Google Scholar
Bastek, J.-H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).
Google Scholar
Meier, T. et al. Scalable phononic metamaterials: Tunable bandgap design and multi-scale experimental validation. Mater. Des. 252, 113778 (2025).
Google Scholar
Kumar, S., Tan, S., Zheng, L. & Kochmann, D. M. Inverse-designed spinodoid metamaterials. npj Comput. Mater. 6, 73 (2020).
Google Scholar
Nakarmi, S., Leiding, J. A., Lee, K.-S. & Daphalapurkar, N. P. Predicting non-linear stress-strain response of mesostructured cellular materials using supervised autoencoder. Comput. Methods Appl. Mech. Eng. 432, 117372 (2024).
Google Scholar
McNeel, R. et al. Grasshopper-algorithmic modeling for rhino. http://www.grasshopper3d.com (2013).
Dassault Systèmes. Abaqus Analysis User’s Manual, Version 2020 (2020).
Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940).
Google Scholar
Rivlin, R. Large elastic deformations of isotropic materials. i. fundamental concepts. Philosophical Trans. Royal Soc. London. Series A, Math. Phys. Sci. 240, 459–490 (1948).
Google Scholar
Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdisciplinary Rev. Comput. Statist. 2, 433–459 (2010).
Google Scholar
Yang, C., Kim, Y., Ryu, S. & Gu, G. X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020).
Google Scholar
Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Int. Conference Mach. Learn., 448–456 (pmlr, 2015).
Li, X., Chen, S., Hu, X. & Yang, J. Understanding the disharmony between dropout and batch normalization by variance shift. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2682–2690 (2019).
Kullback, S. & Leibler, R. A. On information and sufficiency. Annals Math. Statist. 22, 79–86 (1951).
Google Scholar
Higgins, I. et al. Early visual concept learning with unsupervised deep learning. arXiv preprint arXiv:1606.05579 (2016).
Fu, H. et al. Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019).
Smith, S. L., Kindermans, P.-J., Ying, C. & Le, Q. V. Don’t decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489 (2017).
Liu, Y., Neophytou, A., Sengupta, S. & Sommerlade, E. Relighting images in the wild with a self-supervised siamese auto-encoder. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 32–40 (2021).
Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).
Google Scholar
Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
Google Scholar
Zhao, F., Huang, Q. & Gao, W. Image matching by normalized cross-correlation. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2, II–II (IEEE, 2006).