United States Department of Agriculture, National Agricultural Statistics Service. Quick stats: NASS statistical data. https://quickstats.nass.usda.gov/ (Accessed 16 October 2024) (2023).
Cassman, K. G. & Dobermann, A. Nitrogen and the future of agriculture: 20 years on: this article belongs to Ambio’s 50th anniversary collection. theme: solutions-oriented research. Ambio 51, 17–24 (2022).
Google Scholar
Donner, S. & Kucharik, C. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl. Acad. Sci. USA 105, 4513–4518 (2008).
Google Scholar
Ribaudo, M. Reducing agriculture’s nitrogen footprint: are new policy approaches needed?. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America. Technical Report, 34–39 (2011).
Greer, K. D. & Pittelkow, C. M. Linking nitrogen losses with crop productivity in maize agroecosystems. Front. Sustain. Food Syst. 2, 29 (2018).
Google Scholar
Li, A. et al. A case study of environmental benefits of sensor-based nitrogen application in corn. J. Environ. Qual. 45, 675–683 (2016).
Google Scholar
Galloway, J. N. & Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71 (2002).
Google Scholar
Kim, S. & Dale, B. E. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environ. Sci. Technol. 42, 6028–6033 (2008).
Google Scholar
Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
Google Scholar
Zhang, X. et al. Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper Midwest, USA. Int. J. Biometeorol. 59, 299–310 (2014).
Google Scholar
Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).
Google Scholar
Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J. & Hoben, J. P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strateg. Glob. change 15, 185–204 (2010).
Google Scholar
Robertson, G. P. et al. Nitrogen–climate interactions in U.S. agriculture. Biogeochemistry 114, 41–70 (2013).
Google Scholar
Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More food, low pollution (mo fo lo po): a grand challenge for the 21st century. J. Environ. Qual. 44, 305–311 (2015).
Google Scholar
Khanna, M., Gramig, B. M., DeLucia, E. H., Cai, X. & Kumar, P. Harnessing emerging technologies to reduce Gulf hypoxia. Nat. Sustain. 2, 889–891 (2019).
Kanter, D. R., Del Grosso, S., Scheer, C., Pelster, D. E. & Galloway, J. N. Why future nitrogen research needs the social sciences. Curr. Opin. Environ. Sustain. 47, 54–60 (2020).
Google Scholar
Zhang, X. et al. Nitrogen management during decarbonization. Nat. Rev. Earth Environ. 5, 717–731 (2024).
Heady, E. O., Pesek, J. T. & Brown, W. G. Crop response surfaces and economic optima in fertilizer use. Iowa State Coll. J. Sci. 29, 653–665 (1955).
Google Scholar
Cerrato, M. & Blackmer, A. Comparison of models for describing; corn yield response to nitrogen fertilizer. Agron. J. 82, 138–143 (1990).
Google Scholar
Bullock, D. G. & Bullock, D. S. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison. Agron. J. 86, 191–195 (1994).
Google Scholar
McSwiney, C. P. & Robertson, G. P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Change Biol. 11, 1712–1719 (2005).
Google Scholar
Hoben, J., Gehl, R., Millar, N., Grace, P. & Robertson, G. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Change Biol. 17, 1140–1152 (2011).
Google Scholar
Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Environ. Qual. 44, 312–324 (2015).
Google Scholar
Mandrini, G., Pittelkow, C. M., Archontoulis, S. V., Mieno, T. & Martin, N. F. Understanding differences between static and dynamic nitrogen fertilizer tools using simulation modeling. Agric. Syst. 194, 103275 (2021).
Google Scholar
Banger, K., Nasielski, J., Janovicek, K., Sulik, J. & Deen, B. Potential farm-level economic impact of incorporating environmental costs into nitrogen decision making: a case study in Canadian corn production. Front. Sustain. Food Syst. 4, 96 (2020).
Correndo, A. A. et al. Unraveling uncertainty drivers of the maize yield response to nitrogen: a Bayesian and machine learning approach. Agric. For. Meteorol. 311, 108668 (2021).
Google Scholar
Morris, T. F. et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1–37 (2018).
Google Scholar
Ransom, C. J. et al. Corn nitrogen rate recommendation tools’ performance across eight US Midwest corn belt states. Agron. J. 112, 470–492 (2020).
Google Scholar
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Google Scholar
Chai, Y., Pannell, D. J. & Pardey, P. G. Nudging farmers to reduce water pollution from nitrogen fertilizer. Food Policy 120, 102525 (2023).
Google Scholar
Houser, M. Farmer motivations for excess nitrogen use in the US Corn Belt. Case Stud. Environ. 6, 1688823 (2022).
Google Scholar
Sellars, S. C., Schnitkey, G. D. & Gentry, L. F. Do Illinois farmers follow university-based nitrogen recommendations? In Proc. 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304617. https://ageconsearch.umn.edu/record/304617?ln=en&v=pdf (Agricultural and Applied Economics Association, 2020).
Sheriff, G. Efficient waste? Why farmers over-apply nutrients and the implications for policy design. Rev. Agric. Econ. 27, 542–557 (2005).
Google Scholar
Stuart, D., Schewe, R. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: understanding farmer decision-making and potential barriers to change in the U.S. Land Use Policy 36, 210–218 (2014).
Google Scholar
Osmond, D. L., Hoag, D. L., Luloff, A. E., Meals, D. W. & Neas, K. Farmers’ use of nutrient management: lessons from watershed case studies. J. Environ. Qual. 44, 382–390 (2015).
Google Scholar
Rajsic, P., Weersink, A. & Gandorfer, M. Risk and nitrogen application levels. Can. J. Agric. Econ./Rev. can.’agroecon. 57, 223–239 (2009).
Google Scholar
Mitchell, P. D. Nutrient best management practice insurance and farmer perceptions of adoption risk. J. Agric. Appl. Econ. 36, 657–673 (2004).
Google Scholar
Pannell, D. J. Economic perspectives on nitrogen in farming systems: managing trade-offs between production, risk and the environment. Soil Res. 55, 473–478 (2017).
Google Scholar
Tevenart, C. & Brunette, M. Role of farmers’ risk and ambiguity preferences on fertilization decisions: an experiment. Sustainability 13, 9802 (2021).
Google Scholar
Stuart, D., Denny, R. C., Houser, M., Reimer, A. P. & Marquart-Pyatt, S. Farmer selection of sources of information for nitrogen management in the US Midwest: implications for environmental programs. Land Use Policy 70, 289–297 (2018).
Google Scholar
Mitchell, P. D. & Hennessy, D. A. Factors determining best management practice adoption incentives and the impact of green insurance. In Risk management and the environment: Agriculture in perspective 52–66 (Dordrecht: Springer Netherlands, 2003).
Coble, K. H., Hanson, T., Miller, J. C. & Shaik, S. Agricultural insurance as an environmental policy tool. J. Agric. Appl. Econ. 35, 391–405 (2003).
Google Scholar
Metcalfe, T., Bosch, D. J., Pease, J. W., Alley, M. M. & Phillips, S. B. Yield reserve program costs in the Virginia Coastal Plain. Agric. Resour. Econ. Rev. 36, 197–212 (2007).
Google Scholar
Harris, L. M. & Swinton, S. M. Using BMP insurance to improve farm management. (Michigan State University, 2012).
Thorburn, P. J. et al. Innovative economic levers: a system for underwriting risk of practice change in cane-farming. (Reef and Rainforest Research Centre, 2020).
McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68, 194–203 (2018).
Google Scholar
Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).
Google Scholar
Gray Betts, C., Hicks, D., Reader, M. & Wilson, P. Nitrogen balance is a predictor of farm business performance in the English Farm Business Survey. Front. Sustain. Food Syst. 7, 1106196 (2023).
Google Scholar
Paut, R. et al. On-farm assessment of an innovative dynamic fertilization method to improve nitrogen recovery in winter wheat. Nutr. Cycl. Agroecosyst. 129, 475–490 (2024).
Google Scholar
Shahadha, S. S., Wendroth, O. & Ding, D. Nitrogen and rainfall effects on crop growth—experimental results and scenario analyses. Water 13, 2219 (2021).
Google Scholar
McKay Fletcher, D. et al. Projected increases in precipitation are expected to reduce nitrogen use efficiency and alter optimal fertilization timings in agriculture in the south east of England. ACS Es&t Eng. 2, 1414–1424 (2022).
Google Scholar
Govindasamy, P. et al. Nitrogen use efficiency-“a key to enhance crop productivity under a changing climate. Front. Plant Sci. 14, 1121073 (2023).
Google Scholar
Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl. Acad. Sci. USA 118, e2022666118 (2021).
Google Scholar
Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).
Google Scholar
Sela, S. et al. Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach. J. Environ. Qual. 46, 311–319 (2017).
Google Scholar
Puntel, L. A. et al. A systems modeling approach to forecast corn economic optimum nitrogen rate. Front. Plant Sci. 9, 436 (2018).
Google Scholar
Scharf, P. C., Brouder, S. M. & Hoeft, R. G. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the north-central USA. Agron. J. 98, 655–665 (2006).
Google Scholar
Schmidt, J. P., Dellinger, A. E. & Beegle, D. B. Nitrogen recommendations for corn: an on-the-go sensor compared with current recommendation methods. Agron. J. 101, 916–924 (2009).
Google Scholar
Ciampitti, I. A. et al. Does the critical n dilution curve for maize crop vary across genotype x environment x management scenarios?—A Bayesian analysis. Eur. J. Agron. 123, 126202 (2021).
Google Scholar
Mandrini, G., Bullock, D. S. & Martin, N. F. Modeling the economic and environmental effects of corn nitrogen management strategies in Illinois. Field Crops Res. 261, 108000 (2021).
Google Scholar
Chunjiang, Z. et al. Evaluation of variable-rate nitrogen recommendation of winter wheat based on SPAD chlorophyll meter measurement. N. Z. J. Agric. Res. 50, 735–741 (2007).
Google Scholar
Dumont, B., Basso, B., Bodson, B., Destain, J.-P. & Destain, M.-F. Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium. Environ. Model. Softw. 79, 184–196 (2016).
Google Scholar
Kablan, L. A. et al. Variability in corn yield response to nitrogen fertilizer in eastern Canada. Agron. J. 109, 2231–2242 (2017).
Google Scholar
Vergara, O., Zuba, G., Doggett, T. & Seaquist, J. Modeling the potential impact of catastrophic weather on crop insurance industry portfolio losses. Am. J. Agric. Econ. 90, 1256–1262 (2008).
Google Scholar
Kunreuther, H. Correlated risks. In Encyclopedia of quantitative risk analysis and assessment (eds E. L. Melnick & B. S. Everitt), 374–375 (John Wiley & Sons, 2008).
Hernández-Rojas, L. F. et al. The role of data-driven methodologies in weather index insurance. Appl. Sci. 13, 4785 (2023).
Google Scholar
Roy, E. D., Wagner, C. R. H. & Niles, M. T. Hot spots of opportunity for improved cropland nitrogen management across the United States. Environ. Res. Lett. 16, 035004 (2021).
Google Scholar
Van Grinsven, H. J. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).
Google Scholar
Rosas, F., Babcock, B. A. & Hayes, D. J. Nitrous oxide emission reductions from cutting excessive nitrogen fertilizer applications. Clim. Change 132, 353–367 (2015).
Google Scholar
Blandford, D. & Hassapoyannes, K. The role of agriculture in global GHG mitigation. OECD Food, Agriculture and Fisheries Papers No. 112, https://doi.org/10.1787/da017ae2-en (OECD Publishing, Paris, 2018).
Gao, Y. & Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 4, 170–178 (2023).
Google Scholar
Jain, A. K. Greenhouse gas emissions from nitrogen fertilizers. Nat. Food 4, 139–140 (2023).
Google Scholar
Illinois-EPA. Illinois nutrient loss reduction strategy. Illinois Environmental Protection Agency. https://epa.illinois.gov/topics/water-quality/watershed-management/excess-nutrients/nutrient-loss-reduction-strategy.html (Accessed 28 November 2024) (2015).
Pannell, D. J. Flat earth economics: the far-reaching consequences of flat payoff functions in economic decision making. Rev. Agric. Econ. 28, 553–566 (2006).
Google Scholar
Pannell, D. J. et al. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 46, 1407–1424 (2006).
Google Scholar
SriRamaratnam, S., Bessler, D. A., Rister, M. E., Matocha, J. E. & Novak, J. Fertilization under uncertainty: an analysis based on producer yield expectations. Am. J. Agric. Econ. 69, 349–357 (1987).
Google Scholar
Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).
Google Scholar
Dionne, K. Y. & Horowitz, J. The political effects of agricultural subsidies in Africa: Evidence from Malawi. World Dev. 87, 215–226 (2016).
Google Scholar
Reyes-García, V. et al. The costs of subsidies and externalities of economic activities driving nature decline. Ambio 54, 1128–1141 (2025).
Campbell, B. M. et al. Urgent action to combat climate change and its impacts (SDG 13): transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 34, 13–20 (2018).
Google Scholar
Lyle, G., Bryan, B. & Ostendorf, B. Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development. Precis. Agric. 15, 377–402 (2014).
Google Scholar
Arslan, S. & Colvin, T. S. Grain yield mapping: yield sensing, yield reconstruction, and errors. Precis. Agric. 3, 135–154 (2002).
Google Scholar
Trevisan, R., Bullock, D. & Martin, N. Spatial variability of crop responses to agronomic inputs in on-farm precision experimentation. Precis. Agric. 22, 342–363 (2021).
Google Scholar
Alesso, C. A. & Martin, N. F. Spatial and temporal variability of corn response to nitrogen and seed rates. Agron. J. 116, 897–916 (2024).
Google Scholar
Lemaire, G. & Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9, 1309 (2020).
Google Scholar
Wang, X. et al. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. Eur. J. Agron. 123, 126193 (2021).
Google Scholar
Ciampitti, I. A., Briat, J.-F., Gastal, F. & Lemaire, G. Redefining crop breeding strategy for effective use of nitrogen in cropping systems. Commun. Biol. 5, 823 (2022).
Google Scholar
Shao, H. et al. Evaluating critical nitrogen dilution curves for assessing maize nitrogen status across the US Midwest. Agronomy 13, 1948 (2023).
Google Scholar
Preza-Fontes, G., Nafziger, E. D., Christianson, L. E. & Pittelkow, C. M. Relationship of in-season soil nitrogen concentration with corn yield and potential nitrogen losses. Soil Sci. Soc. Am. J. 84, 1296–1306 (2020).
Google Scholar
Kyveryga, P. & Blackmer, T. On-farm evaluations to calibrate tools for estimating late-season nitrogen status of corn. Agron. J. 104, 1284–1294 (2012).
Google Scholar
Just, R. E., Calvin, L. & Quiggin, J. Adverse selection in crop insurance: actuarial and asymmetric information incentives. Am. J. Agric. Econ. 81, 834–849 (1999).
Google Scholar
Tremblay, N. et al. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 104, 1658–1671 (2012).
Google Scholar
Lory, J. & Scharf, P. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn. Agron. J. 95, 994–999 (2003).
Google Scholar
Meisinger, J. Evaluating plant-available nitrogen in soil-crop systems. in Nitrogen in Crop Production (ed. Hauck, R. D.) 389–416 (1984).
Zhu, Q., Schmidt, J., Lin, H. & Sripada, R. Hydropedological processes and their implications for nitrogen availability to corn. Geoderma 154, 111–122 (2009).
Google Scholar
Agflex. Final Report on the BMP Challenge Program (American Farmland Trust, 2014).
Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).
Google Scholar
Campbell, S. Insuring best management practices. J. Soil Water Conserv. 58, 116A–117A (2003).
Google Scholar
Mandrini, G., Archontoulis, S. V., Pittelkow, C. M., Mieno, T. & Martin, N. F. Simulated dataset of corn response to nitrogen over thousands of fields and multiple years in Illinois. Data Brief 40, 107753 (2022).
Google Scholar
Mandrini, G., Pittelkow, C. M., Archontoulis, S., Kanter, D. & Martin, N. F. Exploring trade-offs between profit, yield, and the environmental footprint of potential nitrogen fertilizer regulations in the US Midwest. Front. Plant Sci. 13, 852116 (2022).
Google Scholar
Liu, M., Khanna, M. & Atallah, S. S. Policy instruments to promote the adoption of sustainable nitrogen management practices. Paper presented at the 2024 Agricultural and Applied Economics Association (AAEA) Annual Meeting. https://doi.org/10.22004/ag.econ.344024 (New Orleans, LA, 2024).
Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2 Technical Report (Oak Ridge National Laboratory (ORNL), 2014).
Natural Resources Conservation Service, USDA. Soil Survey Geographic (SSURGO) Database for Illinois. (2018).
Thorburn, P. J., Biggs, J. S., Collins, K. & Probert, M. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric. Ecosyst. Environ. 136, 343–350 (2010).
Google Scholar
Del Grosso, S. et al. General model for N2O and N2 gas emissions from soils due to denitrification. Glob. Biogeochem. cycles 14, 1045–1060 (2000).
Google Scholar
Li, Y. et al. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol. Model. 203, 395–423 (2007).
Google Scholar
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023).
Liu, X., Elgowainy, A. & Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green. Chem. 22, 5751–5761 (2020).
Google Scholar
Hood, C. & Kidder, G. Fertilizers and energy. Fact Sheet EES-58, November (1992).
Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 1–9 (2019).
Google Scholar
Puntel, L. A., Pagani, A. & Archontoulis, S. V. Development of a nitrogen recommendation tool for corn considering static and dynamic variables. Eur. J. Agron. 105, 189–199 (2019).
Google Scholar
Nafziger, E., Sawyer, J., Laboski, C. & Franzen, D. The MRTN approach to making nitrogen rate recommendations: background and implementation. Crops Soils 55, 4–11 (2022).
Google Scholar
Baum, M. E. et al. The optimum nitrogen fertilizer rate for maize in the US Midwest is increasing. Nat. Commun. 16, 404 (2025).
Tenorio, F. A. et al. Luck versus skill: is nitrogen balance in irrigated maize fields driven by persistent or random factors?. Environ. Sci. Technol. 55, 749–756 (2020).