Gao, X., Yang, M., Pereira, A., Guo, S. & Zhang, H. Simulation calculation of selective reflective films based on metamaterials and prediction of color in light filter with machine learning. Eng. Sci. https://doi.org/10.30919/es1158 (2024).
Google Scholar
Sahin, S., Nahar, N. K. & Sertel, K. Dielectric properties of Low-Loss polymers for MmW and THz applications. J. Infrared Millim. Terahertz Waves. 40(5), 557–573. https://doi.org/10.1007/s10762-019-00584-2 (2019).
Google Scholar
Cava, R. F., Peck, W. F. & Krajewski, J. J. Enhancement of the dielectric constant of Ta2O5 through substitude with TiO2. Nature 377, 21 (1995).
Google Scholar
Kawarasaki, M., Tanabe, K., Terasaki, I., Fujii, Y. & Taniguchi, H. Intrinsic enhancement of dielectric permittivity in (Nb + In) co-doped TiO(2) single crystals. Sci. Rep. 7(1), 5351. https://doi.org/10.1038/s41598-017-05651-z (2017).
Google Scholar
Sebastian, M. T., Ubic, R. & Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412. https://doi.org/10.1179/1743280415y.0000000007 (2015).
Google Scholar
Webb, A., Shchelokova, A., Slobozhanyuk, A., Zivkovic, I. & Schmidt, R. Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGMA 3(6), 875–894. https://doi.org/10.1007/s10334-022-01007-5 (2022).
Google Scholar
Watanabe, A. O., Ali, M., Sayeed, S. Y. B., Tummala, R. R. & Raj, P. M. A review of 5G Front-End systems package integration. IEEE Trans. Compon. Packag Manuf. Technol., 118 11 (2020).
Li, J. & Ghalichechian, N. Suspended Highly-efficient On-chip Phased Array Antenna at 60 GHz, presented at the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, (2019).
Popa, B. I. & Cummer, S. A. Compact dielectric particles as a Building block for low-loss magnetic metamaterials. Phys. Rev. Lett., 100(20), 207401, 2008, https://doi.org/10.1103/PhysRevLett.100.207401
Felix, N., Tran-Huu-Hue, L. P., Walker, L., Millar, C. & Lethiecq, M. The application of high permittivity piezoelectric ceramics to 2D array transducers for medical imaging. Ultrasonics 38, 1–8 (2000).
Google Scholar
Chen, W. et al. Tunable ultrahigh dielectric constant (tuHDC) ceramic technique to largely improve RF coil efficiency and MR imaging performance. IEEE Trans. Med. Imaging. 39(10), 3187–3197. https://doi.org/10.1109/TMI.2020.2988834 (2020).
Google Scholar
Rong, C., Yan, L., Li, L., Li, Y. & Liu, M. Rev. Metamaterials Wirel. Power Transf. Mater. (Basel), https://doi.org/10.3390/ma16176008. (2023).
Google Scholar
Lee, W. & Yoon, Y. K. Wireless power transfer systems using metamaterials: A review. IEEE Access. 8, 147930–147947. https://doi.org/10.1109/access.2020.3015176 (2020).
Google Scholar
Li, F. et al. Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation. Appl. Energy. https://doi.org/10.1016/j.apenergy.2022.119631 (2022).
Google Scholar
Wang, B. et al. Wirel. Power Transf. Metamaterials Presented EUCAP (2011).
Peev, D., Kolev, N. & Sivkov, Y. Stratified Layer Composite Material for Radar Anti-reflective Coating, presented at the 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA) (2022).
Huang, J. Y., Fei, G. T., Xu, S. H. & Wang, B. ZnO–SiO2 composite coating with anti-reflection and photoluminescence properties for improving the solar cell efficiency. Compos. Part. B: Eng. 251 https://doi.org/10.1016/j.compositesb.2022.110486 (2023).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966 (2000).
Google Scholar
Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics (2007).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Phys. Uspekhi, 10, 4 (1968).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305(5685), 788–792. https://doi.org/10.1126/science.1096796 (2004).
Navarro-Cía, M., Akmansoy, E., Marcellin, S. & Han, J. Negative index and mode coupling in all-dielectric metamaterials at Terahertz frequencies, EPJ Applied Metamaterials, 5, (2018). https://doi.org/10.1051/epjam/2018006
Suzuki, T., Sekiya, M., Sato, T. & Takebayashi, Y. Negative refractive index metamaterial with high transmission, low reflection, and low loss in the Terahertz waveband. Opt. Express. 26(7), 8314–8324. https://doi.org/10.1364/OE.26.008314 (2018).
Google Scholar
Padilla, W. J., Basov, D. N. & Smith, D. R. Negative refractive index metamaterials. Mater. Today. 9, 7–8. https://doi.org/10.1016/s1369-7021(06)71573-5 (2006).
Google Scholar
Yao, H. Y., Lin, Y. W. & Chang, T. H. Dielectric properties of BaTiO(3)-epoxy nanocomposites in the microwave regime. Polymers (2021). https://doi.org/10.3390/polym13091391
Broadbent, S. R. & Hammersley, J. M. Percolation processes I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641. https://doi.org/10.1017/s0305004100032680 (1957).
Bergman, D. J. & Imry, Y. Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material. Phys. Rev. Lett. 39, 1222–1225. https://doi.org/10.1103/PhysRevLett.39.1222 (1977).
Google Scholar
Stephen, M. A. Magnetic susceptibility of percolating clusters. Phys. Lett. 87A(1), 2 (1981).
Bowman, D. R. & Stroud, D. Divergent diamagnetism in superconducting and normal metal composites near the percolation threshold. Phys. Rev. Lett. 52(4), 299–302. https://doi.org/10.1103/PhysRevLett.52.299 (1984).
Google Scholar
Lagar’kov, A. N., Panina, L. V. & Sarychev, A. K. Effective Magnetic Permeability of Composite Materials Near the Percolation Threshold. MRS Proceedings (1991). https://doi.org/10.1557/proc-232-195
Su, S. C. & Chang, T. H. Manipulating the permittivities and permeabilities of epoxy/silver nanocomposites over a wide bandwidth. Appl. Phys. Lett. https://doi.org/10.1063/5.0006835 (2020).
Google Scholar
Stauffer, D. & Aharony, A. Introduction To Percolation Theory (Taylor & Francis, 1992).
Nan, C. W. Physics of inhomogeneous inorganic materials. Prog Mater. Sci. (1993).
Meloni, M. et al. Explosive percolation yields highly-conductive polymer composites. Nat. Commun. 13, 7463. https://doi.org/10.1038/s41467-022-34631-9 (2022).
Google Scholar
Liu, X. et al. Nanoparticle geometry effects on percolation in Ni–Fe/PEEK. Phys. Rev. B 106, 224417. https://doi.org/10.1103/PhysRevB.106.224417
Shi, G., Sun, X. & Liu, Y. Percolation-Triggered negative permittivity in nano carbon Powder/Polyvinylidene fluoride composites. Molecules https://doi.org/10.3390/molecules29163862 (2024).
Google Scholar
Chang, C. H., Su, S. C., Chang, T. H. & Chang, C. R. Frequency-induced negative magnetic susceptibility in epoxy/magnetite nanocomposites. Sci. Rep. https://doi.org/10.1038/s41598-021-82590-w (2021).
Google Scholar
Wu, Z. et al. Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with Silica@Multi-walled carbon nanotubes and Boron nitride. ES Mater. Manuf. https://doi.org/10.30919/esmm5f847 (2023).
Google Scholar
Harris, A. B. Field-theoretic approach to biconnectedness in percolating systems. Phys. Rev. B. 28(5), 2614–2629. https://doi.org/10.1103/PhysRevB.28.2614 (1983).
Google Scholar
Wang, L., Bai, Y., Lu, X., Cao, J. L. & Qiao, L. J. Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity. Sci. Rep. 5, 7580. https://doi.org/10.1038/srep07580 (2015).
Google Scholar
Shehzad, K. et al. Two percolation thresholds and remarkably high dielectric permittivity in pristine carbon nanotube/elastomer composites .App. Nanosci. 5(8), 969–974. https://doi.org/10.1007/s13204-015-0403-0 (2015).
Karpov, V. G., Serpen, G. & Patmiou, M. Percolation with plasticity for neuromorphic systems. J. Physics: Complex. 1(3), 035009 (2020).
Google Scholar
Dlamini, Z. W. et al. Resistive switching in Polyvinylpyrrolidone/Molybdenum disulfide Composite-Based memory devices. Acta Phys. Pol., A. 141(5), 439–444. https://doi.org/10.12693/APhysPolA.141.439 (2022).
Google Scholar
Park, J. et al. Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer. Nat. Commun. 13(1), 5233. https://doi.org/10.1038/s41467-022-32966-x (2022).
Google Scholar