Stokholm, J. et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci. Transl. Med. 12, eaax9929 (2020).
Dai, D. L. Y. et al. Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med 4, 92–112.e5 (2023).
Google Scholar
Boulund, U. et al. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 30, 1464–1480.e6 (2022).
Google Scholar
Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).
Google Scholar
Lehtimäki, J. et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. J. Allergy Clin. Immunol. 148, 234–243 (2021).
Google Scholar
Leal Rodríguez, C. et al. The infant gut virome is associated with preschool asthma risk independently of bacteria. Nat. Med. 30, 138–148 (2024).
Google Scholar
Wood, D. J. Adenovirus gastroenteritis. Br. Med. J. 296, 229–230 (1988).
Google Scholar
Spandole, S., Cimponeriu, D., Berca, L. M. & Mihăescu, G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch. Virol. 160, 893–908 (2015).
Google Scholar
Hino, S. & Miyata, H. Torque teno virus (TTV): current status. Rev. Med. Virol. 17, 45–57 (2007).
Google Scholar
Miyata, H. et al. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J. Virol. 73, 3582–3586 (1999).
Google Scholar
Ninomiya, M. et al. Identification and genomic characterization of a novel human torque teno virus of 3.2 kb. J. Gen. Virol. 88, 1939–1944 (2007).
Google Scholar
Cebriá-Mendoza, M. et al. Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci. Rep. 11, 6921 (2021).
Google Scholar
Arze, C. A. et al. Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome. Cell Host Microbe 29, 1305–1315.e6 (2021).
Google Scholar
Ninomiya, M., Takahashi, M., Nishizawa, T., Shimosegawa, T. & Okamoto, H. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J. Clin. Microbiol. 46, 507–514 (2008).
Google Scholar
Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).
Google Scholar
Osiowy, C. Detection of TT virus in human hair and skin. Hepatol. Res. 16, 155–162 (2000).
Google Scholar
Inami, T., Konomi, N., Arakawa, Y. & Abe, K. High prevalence of TT virus DNA in human saliva and semen. J. Clin. Microbiol. 38, 2407–2408 (2000).
Google Scholar
Naganuma, M. et al. TT virus prevalence, viral loads and genotypic variability in saliva from healthy Japanese children. Acta Paediatr. 97, 1686–1690 (2008).
Google Scholar
Okamoto, H. et al. Fecal excretion of a nonenveloped DNA virus (TTV) associated with posttransfusion non-A-G hepatitis. J. Med. Virol. 56, 128–132 (1998).
Google Scholar
Ross, R. S., Viazov, S., Runde, V., Schaefer, U. W. & Roggendorf, M. Detection of TT virus DNA in specimens other than blood. J. Clin. Virol. 13, 181–184 (1999).
Google Scholar
Matsubara, H. et al. Existence of TT virus DNA in extracellular body fluids from normal healthy Japanese subjects. Intervirology 43, 16–19 (2000).
Google Scholar
Niel, C., Saback, F. L. & Lampe, E. Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults. J. Clin. Microbiol. 38, 1926–1930 (2000).
Google Scholar
Tyschik, E. A., Rasskazova, A. S., Degtyareva, A. V., Rebrikov, D. V. & Sukhikh, G. T. Torque teno virus dynamics during the first year of life. Virol. J. 15, 96 (2018).
Google Scholar
Gerner, P., Oettinger, R., Gerner, W., Falbrede, J. & Wirth, S. Mother-to-infant transmission of TT virus: prevalence, extent and mechanism of vertical transmission. Pediatr. Infect. Dis. J. 19, 1074–1077 (2000).
Google Scholar
Matsubara, H. et al. Existence of TT virus DNA and TTV-like mini virus DNA in infant cord blood: mother-to-neonatal transmission. Hepatol. Res. 21, 280–287 (2001).
Google Scholar
Schröter, M. et al. Detection of TT virus DNA and GB virus type C/Hepatitis G virus RNA in serum and breast milk: determination of mother-to-child transmission. J. Clin. Microbiol. 38, 745–747 (2000).
Google Scholar
Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).
Google Scholar
Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).
Google Scholar
Kaczorowska, J. & van der Hoek, L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol. Rev. 44, 305–313 (2020).
Google Scholar
McCann, A. et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ 6, e4694 (2018).
Google Scholar
Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).
Google Scholar
Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).
Google Scholar
Taboada, B. et al. The gut virome of healthy children during the first year of life is diverse and dynamic. PLoS ONE 16, e0240958 (2021).
Google Scholar
Walters, W. A. et al. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe 31, 187–198.e3 (2023).
Google Scholar
Freer, G. et al. The vVirome and its major component, anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front. Microbiol. 9, 686 (2018).
Google Scholar
Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).
Google Scholar
McElvania TeKippe, E. et al. Increased prevalence of anellovirus in pediatric patients with fever. PLoS ONE 7, e50937 (2012).
Google Scholar
Sabbaghian, M., Gheitasi, H., Shekarchi, A. A., Tavakoli, A. & Poortahmasebi, V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol. 24, 40 (2024).
Google Scholar
Bai, G.-H., Lin, S.-C., Hsu, Y.-H. & Chen, S.-Y. The human virome: viral metagenomics, relations with human diseases, and therapeutic applications. Viruses 14, 278 (2022).
Zhao, G. et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. USA 114, E6166–E6175 (2017).
Google Scholar
Shah, S. A. et al. Expanding known viral diversity in the healthy infant gut. Nat. Microbiol. 8, 986–998 (2023).
Google Scholar
Zhang, Y. et al. The influence of early life exposures on the infant gut virome. Gut Microbes 17, 2501194 (2025).
Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).
Google Scholar
Bisgaard, H. et al. Deep phenotyping of the unselected COPSAC2010 birth cohort study. Clin. Exp. Allergy 43, 1384–1394 (2013).
Google Scholar
Huang, P. et al. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J. Virol. 86, 4833–4843 (2012).
Google Scholar
Gozalbo-Rovira, R. et al. Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog. 15, e1007865 (2019).
Google Scholar
Currier, R. L. et al. Innate susceptibility to norovirus infections influenced by FUT2 genotype in a United States pediatric population. Clin. Infect. Dis. 60, 1631–1638 (2015).
Google Scholar
Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).
Google Scholar
Christensen, E. D. et al. The developing airway and gut microbiota in early life is influenced by age of older siblings. Microbiome 10, 1–15 (2022).
Google Scholar
Rocchi, J. et al. Torquetenovirus DNA drives proinflammatory cytokines production and secretion by immune cells via toll-like receptor 9. Virology 394, 235–242 (2009).
Google Scholar
Zheng, H. et al. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases. J. Virol. 81, 11917–11924 (2007).
Google Scholar
Peppas, I., Ford, A. M., Furness, C. L. & Greaves, M. F. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 23, 565–576 (2023).
Google Scholar
Amir, A. et al. Gut microbiome development in early childhood is affected by day care attendance. NPJ Biofilms Microbiomes 8, 2 (2022).
Google Scholar
Hermes, G. D. A., Eckermann, H. A., de Vos, W. M. & de Weerth, C. Does entry to center-based childcare affect gut microbial colonization in young infants? Sci. Rep. 10, 1–13 (2020).
Google Scholar
Beller, L. et al. The virota and its transkingdom interactions in the healthy infant gut. Proc. Natl Acad. Sci. USA 119, e2114619119 (2022).
Google Scholar
Sims, A. et al. Superinfection exclusion creates spatially distinct influenza virus populations. PLoS Biol. 21, e3001941 (2023).
Google Scholar
Folimonova, S. Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol. 86, 5554 (2012).
Google Scholar
Maqsood, R. et al. Breast milk virome and bacterial microbiome resilience in Kenyan women living with HIV. mSystems 6, e01079-20 (2021).
Azad, M. B. et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin. Immunol. 9, 15 (2013).
Google Scholar
Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios. Microbiome 5, 40 (2017).
Google Scholar
Butkovic, A. et al. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol. 9, vead035 (2023).
Google Scholar
Liou, S.-H. et al. Anellovirus structure reveals a mechanism for immune evasion. Preprint at bioRxiv https://doi.org/10.1101/2022.07.01.498313 (2022).
Deng, L. et al. A protocol for extraction of infective viromes suitable for metagenomics sequencing from low volume fecal samples. Viruses 11, 667 (2019).
Pearson, W. R. Finding protein and nucleotide similarities with FASTA. Curr. Protoc. Bioinformatics 53, 3.9.1–3.9.25 (2016).
Google Scholar
Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).
Google Scholar
Tordai, H. et al. Comprehensive collection and prediction of ABC transmembrane protein structures in the AI era of structural biology. Int. J. Mol. Sci. 23, 8877 (2022).
Bisgaard, H. et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357, 1487–1495 (2007).
Google Scholar
Bisgaard, H., Hermansen, M. N., Loland, L., Halkjaer, L. B. & Buchvald, F. Intermittent inhaled corticosteroids in infants with episodic wheezing. N. Engl. J. Med. 354, 1998–2005 (2006).
Google Scholar
Hanifin, J. M. & Rajka, G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. Suppl. 92, 44–47 (1980).
Google Scholar
Halkjaer, L. B. et al. Development of atopic dermatitis during the first 3 years of life: the Copenhagen prospective study on asthma in childhood cohort study in high-risk children. Arch. Dermatol. 142, 561–566 (2006).
Google Scholar
Schoos, A.-M. M. et al. Atopic endotype in childhood. J. Allergy Clin. Immunol. 137, 844–851.e4 (2016).
Google Scholar
Stokholm, J. et al. Prevalence and predictors of antibiotic administration during pregnancy and birth. PLoS ONE 8, e82932 (2013).
Google Scholar
Bisgaard, H. et al. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. N. Engl. J. Med. 375, 2530–2539 (2016).
Google Scholar
Chawes, B. L. et al. Effect of vitamin D3 supplementation during pregnancy on risk of persistent wheeze in the offspring: a randomized clinical trial. JAMA 315, 353–361 (2016).
Google Scholar
R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Oksanen, J. et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. https://CRAN.R-project.org/package=vegan (2025).
De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
Google Scholar
Rohart, F., Gautier, B., Singh, A. & Cao, K.-A. L. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLos Comput. Biol. 1 3, e1005752 (2017).
Max, K. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1−26 (2008).
Ziegler, A. & Wright, M. N. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1−17 (2017).