Sobha, T., Vibija, C., & Fahima, P. Coral reef: A hot spot of marine biodiversity. In: Conservation and Sustainable Utilization of Bioresources, pp. 171–194. Springer, Singapore (2023)
Programme, U.E. Coral Reefs. Accessed: 17 September 2025 (2020). https://www.unep.org/topics/ocean-seas-and-coasts/blue-ecosystems/coral-reefs
Lachs, L. & Oñate-Casado, J. Fisheries and tourism: Social, economic, and ecological trade-offs in coral reef systems. In Youmares 9-the Oceans: Our Research 243–260 (Springer, Oldenburg, Germany, 2020).
Küfeoğlu, S. SDG-14: Life Below Water, pp. 453–468. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07127-0_16
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. Status of coral reefs of the world: 2020: Executive summary. Global Coral Reef Monitoring network (GCRMN) and International Coral Reef Initiative (2021)
Lin, Y.-J. et al. Coral reefs in the northeastern saudi arabian red sea are resilient to mass coral mortality events. Mar. Pollut. Bull. 197, 115693 (2023).
Google Scholar
Kleinhaus, K. et al. Science, diplomacy, and the red sea’s unique coral reef: It’s time for action. Front. Mar. Sci. 7, 90 (2020).
Google Scholar
Monroe, A. A. et al. In situ observations of coral bleaching in the central saudi arabian red sea during the 2015/2016 global coral bleaching event. PLoS One 13(4), 0195814 (2018).
Google Scholar
ISO: Underwater Acoustics-Terminology. International Organization for Standardization Geneva, Switzerland (2017)
Lin, T.-H., Akamatsu, T., Sinniger, F. & Harii, S. Exploring coral reef biodiversity via underwater soundscapes. Biol. Cons. 253, 108901 (2021).
Google Scholar
Lamont, T. A. et al. The sound of recovery: Coral reef restoration success is detectable in the soundscape. J. Appl. Ecol. 59(3), 742–756 (2022).
Google Scholar
Gordon, T. A. et al. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes. Proc. Natl. Acad. Sci. 115(20), 5193–5198 (2018).
Google Scholar
Ferrier-Pagès, C. et al. Noise pollution on coral reefs?—A yet underestimated threat to coral reef communities. Mar. Pollut. Bull. 165, 112129 (2021).
Google Scholar
Piercy, J.J.B. The Relevance of Coral Reef Soundscapes to Iarval Fish Responses. PhD thesis, University of Essex (2015)
Raick, X., Di Iorio, L., Gervaise, C., Lossent, J., Lecchini, D., & Parmentier, E. From the reef to the ocean: Revealing the acoustic range of the biophony of a coral reef (moorea island, french polynesia). J. Mar. Sci. Eng. 9(4) (2021https://doi.org/10.3390/jmse9040420
Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci. 188(1), 110–141 (1971).
Google Scholar
Duarte, C. M. et al. The soundscape of the anthropocene ocean. Science 371(6529), 4658 (2021).
Google Scholar
Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evolut. 25(7), 419–427 (2010).
Google Scholar
Bohnenstiehl, D. R., Lillis, A. & Eggleston, D. B. The curious acoustic behavior of estuarine snapping shrimp: Temporal patterns of snapping shrimp sound in sub-tidal oyster reef habitat. PLoS One 11(1), 0143691 (2016).
Google Scholar
Kaplan, M. B., Mooney, T. A., Partan, J. & Solow, A. R. Coral reef species assemblages are associated with ambient soundscapes. Mar. Ecol. Prog. Ser. 533, 93–107 (2015).
Google Scholar
Saheban, H. & Kordrostami, Z. Hydrophones, fundamental features, design considerations, and various structures: A review. Sens. Actuators, A 329, 112790. https://doi.org/10.1016/j.sna.2021.112790 (2021).
Google Scholar
Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65(1), 7–19 (2020).
Google Scholar
Nedelec, S. L. et al. Soundscapes and living communities in coral reefs: Temporal and spatial variation. Mar. Ecol. Prog. Ser. 524, 125–135 (2015).
Google Scholar
Azofeifa-Solano, J. C. et al. Distance and orientation of hydrophones influence the received soundscape in shallow coral reefs. Front. Remote Sens. 6, 1527988 (2025).
Google Scholar
Howell, K. L. et al. A decade to study deep-sea life. Nat. Ecol. Evolut. 5(3), 265–267 (2021).
Google Scholar
Ford, B., Robinson, S., & Ablitt, J. A study of the stability exhibited by hydrophones when exposed to variation in temperature and hydrostatic pressure. In: Proc. of Meetings on Acoustics, vol. 44 (2021)
Burkholz, C., Duarte, C. & Garcias-Bonet, N. Thermal dependence of seagrass ecosystem metabolism in the red sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/MEPS12912 (2019).
Google Scholar
Reif, R. H., Liffers, M., Forrester, N. & Peal, K. Lithium battery safety: A look at woods hole oceanographic institution’s program. Prof. Saf. 55(02), 32–37 (2010).
Google Scholar
Ashry, I. et al. A review of distributed fiber-optic sensing in the oil and gas industry. J. Lightwave Technol. 40(5), 1407–1431 (2022).
Google Scholar
Juškaitis, R., Mamedov, A., Potapov, V. & Shatalin, S. Distributed interferometric fiber sensor system. Opt. Lett. 17(22), 1623–1625 (1992).
Google Scholar
Tucker, R. S., Eisenstein, G. & Korotky, S. K. Optical time-division multiplexing for very high bit-rate transmission. J. Lightwave Technol. 6(11), 1737–1749 (2002).
Google Scholar
Harmon, N., Belal, M., Mangriotis, M.-D., Spingys, C., & Rychert, C.A. Distributed acoustic sensing along a shallow water energy cable. IEEE J. Oceanic Eng. 2025)
Marra, G. et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361(6401), 486–490 (2018).
Google Scholar
Winzer, P. J. & Neilson, D. T. From scaling disparities to integrated parallelism: A decathlon for a decade. J. Lightwave Technol. 35(5), 1099–1115 (2017).
Google Scholar
Miele, P., Snead, K., Zakhireh, N., Homa, D., Pickrell, G., & Risch, B.G. Optical fiber reliability in harsh environments. In: Int. Wire & Cable Symp (2020)
Bouffaut, L. et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the arctic. Front. Mar. Sci. 9, 901348 (2022).
Google Scholar
Landrø, M. et al. Sensing whales, storms, ships and earthquakes using an arctic fibre optic cable. Sci. Rep. 12(1), 19226 (2022).
Google Scholar
Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables. Nat. Commun. 10(1), 5777 (2019).
Google Scholar
Rørstadbotnen, R.A., Landrø, M., Taweesintananon, K., Bouffaut, L., Potter, J.R., Johansen, S.E., Kriesell, H.J., Brenne, J.K., Haukanes, A., Schjelderup, O., & Storvik, F. Analysis of a local earthquake in the arctic using a 120 km long fibre-optic cable 2022(1), 1–5 (2022) https://doi.org/10.3997/2214-4609.202210404
Lin, J. et al. Monitoring ocean currents during the passage of typhoon muifa using optical-fiber distributed acoustic sensing. Nat. Commun. 15(1), 1111 (2024).
Google Scholar
Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7(5), 354–362 (2013).
Google Scholar
Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).
Google Scholar
Huang, M.-F. et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J. Lightwave Technol. 38(1), 75–81 (2019).
Google Scholar
Marin, J. M. et al. Simultaneous distributed acoustic sensing and communication over a two-mode fiber. Opt. Lett. 47(24), 6321–6324 (2022).
Google Scholar
Hu, Z. et al. Enabling cost-effective high-performance vibration sensing in digital subcarrier multiplexing systems. Opt. Express 31(20), 32114–32125 (2023).
Google Scholar
Guo, Y. et al. Submarine optical fiber communication provides an unrealized deep-sea observation network. Sci. Rep. 13(1), 15412 (2023).
Google Scholar
Gunawan, W.H., Marin, J.M., Rjeb, A., Kang, C.H., Ashry, I., Ng, T.K., & Ooi, B.S. Energy harvesting over fiber from amplified spontaneous emission in optical sensing and communication systems. J. Lightwave Technol. 2024)
Gavrilov, A.N., & Parsons, M.J. A matlab tool for the characterisation of recorded underwater sound (chorus). Acoustics Australia 42(3) (2014)
Song, Z. et al. Sounds of snapping shrimp (alpheidae) as important input to the soundscape in the southeast china coastal sea. Front. Mar. Sci. 10, 1029003 (2023).
Google Scholar
Amorim, M. C. P. Diversity of sound production in fish. Commun. Fishes 1, 71–104 (2006).
Google Scholar
Ladich, F. Ecology of sound communication in fishes. Fish Fish. 20(3), 552–563 (2019).
Google Scholar
Ladich, F., Bass, A. & Farrell, A. Vocal behavior of fishes: Anatomy and physiology. Encyclopedia of Fish Physiology: From Genome to Environment 1, 321–329 (2011).
Google Scholar
Xing, C., Tan, G., & Ran, Y. Enhanced off-grid underwater acoustic signals direction estimation using toeplitz covariance reconstruction and subspace fitting. Circuits, Systems, and Signal Processing, 1–29 (2025)
Rørstadbotnen, R. A. et al. Simultaneous tracking of multiple whales using two fiber-optic cables in the arctic. Front. Mar. Sci. 10, 1130898 (2023).
Google Scholar
Malfante, M., Mars, J. I., Dalla Mura, M. & Gervaise, C. Automatic fish sounds classification. J. Acoust. Soc. Am. 143(5), 2834–2846 (2018).
Google Scholar
Looby, A. et al. A quantitative inventory of global soniferous fish diversity. Rev. Fish Biol. Fisheries 32(2), 581–595 (2022).
Google Scholar
Ladich, F. & Fine, M. L. Sound-generating mechanisms in fishes: A unique diversity in vertebrates. Commun. Fishes 1, 3–43 (2006).
Google Scholar
Staaterman, E., Paris, C. B. & Kough, A. S. First evidence of fish larvae producing sounds. Biol. Let. 10(10), 20140643 (2014).
Google Scholar
Parsons, M. J. et al. Sounding the call for a global library of underwater biological sounds. Front. Ecol. Evol. 10, 810156 (2022).
Google Scholar
Ashry, I. et al. Cnn-aided optical fiber distributed acoustic sensing for early detection of red palm weevil: A field experiment. Sensors 22(17), 6491 (2022).
Google Scholar
Rivet, D., Cacqueray, B., Sladen, A., Roques, A. & Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 149(4), 2615–2627 (2021).
Google Scholar
Liu, Z., Zhang, L., Liu, H., Qiu, Z., Xiao, Z., Chen, Z., Wang, T., & Pang, F. 3d printing technology-enhanced phase-sensitive otdr for underwater acoustic wave detection. Optical Fiber Sensors Conference 2020 Special Edition (2021) https://doi.org/10.1364/ofs.2020.t3.26
Zhu, S., Chen, J., Ai, K., Fan, C., Li, H., Yan, Z., & Sun, Q. Fully distributed fiber-optic hydrophone cable for acoustic source azimuth estimation. 2024 OES China Ocean Acoustics (COA), 1–5 (2024) https://doi.org/10.1109/COA58979.2024.10723668
Zhang, C., Yang, S. & Wang, X. Dual pulse heterodyne distributed acoustic sensor system employing soa-based fiber ring laser. Front. Phys. 11, 1196067 (2023).
Google Scholar
Zhang, Y., Yang, H., Chen, Z., Sun, F. & Mao, B. Design and analysis of mems piezoelectric hydrophone based on signal-to-noise ratio. IEEE Sens. J. 25, 11314–11322. https://doi.org/10.1109/JSEN.2025.3540307 (2025).
Google Scholar
Lamont, T.A.C., Chapuis, L., Williams, B., Dines, S., Gridley, T., Frainer, G., Fearey, J., Maulana, P.B., Prasetya, M.E., Jompa, J., Smith, D.J., & Simpson, S. Hydromoth: Testing a prototype low?cost acoustic recorder for aquatic environments. Remote Sens. Ecol. Conserv. 8 (2022) https://doi.org/10.1002/rse2.249
Dahl, P., Miller, J. H., Cato, D. & Andrew, R. Underwater ambient noise. Acoustics Today 3, 23. https://doi.org/10.1121/1.2961145 (2007).
Google Scholar
Dalton, S. J. et al. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from el niño to la niña. Sci. Total Environ. 715, 136951. https://doi.org/10.1016/j.scitotenv.2020.136951 (2020).
Google Scholar
Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P., & Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev.6(4) (2019)
Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).
Google Scholar
Mao, Y. et al. Sensing within the otdr dead-zone using a two-mode fiber. Opt. Lett. 45(11), 2969–2972 (2020).
Google Scholar
Lu, Y., Zhu, T., Chen, L. & Bao, X. Distributed vibration sensor based on coherent detection of phase-otdr. J. Lightwave Technol. 28(22), 3243–3249 (2010).
Google Scholar
Bao, X., Zhou, D.-P., Baker, C. & Chen, L. Recent development in the distributed fiber optic acoustic and ultrasonic detection. J. Lightwave Technol. 35(16), 3256–3267 (2017).
Google Scholar
Posey, R. Jr., Johnson, G. & Vohra, S. Strain sensing based on coherent rayleigh scattering in an optical fibre. Electron. Lett. 36(20), 1688–1689 (2000).
Google Scholar
Lillis, A. & Mooney, T. A. Snapping shrimp sound production patterns on caribbean coral reefs: Relationships with celestial cycles and environmental variables. Coral Reefs 37(2), 597–607 (2018).
Google Scholar
Ashry, I. et al. Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Appl. Opt. 58(18), 4933–4938 (2019).
Google Scholar