Bernini, F., Doria, G., Razzetti, E. & Sindaco, R. Atlas of Italian Amphibians and Reptiles. (Societas Herpetologica Italica, Polistampa, 2006).
Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Amphibia. Fauna d’Italia (Calderini, 2007).
Romano, A. et al. Hyla sarda. The IUCN Red List of Threatened Species 2024, e.T55645A223764163 https://doi.org/10.2305/IUCN.UK.2024-2.RLTS.T55645A223764163.en (2023).
Bisconti, R., Canestrelli, D. & Nascetti, G. Genetic diversity and evolutionary history of the Tyrrhenian treefrog Hyla sarda (Anura: Hylidae): adding pieces to the puzzle of Corsica-Sardinia biota. Biological Journal of The Linnean Society 103, 159–167, https://doi.org/10.1111/j.1095-8312.2011.01643.x (2011).
Article
Google Scholar
Bisconti, R., Canestrelli, D., Colangelo, P. & Nascetti, G. Multiple lines of evidence for demographic and range expansion of a temperate species (Hyla sarda) during the last glaciation. Mol. Ecol. 20, 5313–5327, https://doi.org/10.1111/j.1365-294X.2011.05363.x (2011).
Article
PubMed
Google Scholar
Spadavecchia, G., Chiocchio, A., Bisconti, R. & Canestrelli, D. Paso doble: A two-step Late Pleistocene range expansion in the Tyrrhenian tree frog Hyla sarda. Gene 780, 145489, https://doi.org/10.1016/j.gene.2021.145489 (2021).
Article
PubMed
Google Scholar
Bisconti, R., Chiocchio, A., Costantini, D., Carere, C. & Canestrelli, D. Drivers of phenotypic variation along a Late Pleistocene range expansion route. J. Biogeogr.e70044, https://doi.org/10.1111/jbi.70044 (2025).
Spadavecchia, G. et al. Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route. Evol. Ecol. 37, 291–303, https://doi.org/10.1007/s10682-022-10216-2 (2023).
Article
Google Scholar
Liparoto, A., Canestrelli, D., Bisconti, R., Carere, C. & Costantini, D. Biogeographic history moulds population differentiation in ageing of oxidative status in an amphibian. J. Exp. Biol. 223, jeb235002, https://doi.org/10.1242/jeb.235002 (2020).
Article
PubMed
Google Scholar
Canestrelli, D. et al. Biogeography of telomere dynamics in a vertebrate. Ecography (Cop.) 44, 453–455, https://doi.org/10.1111/ecog.05286 (2021).
Article
ADS
Google Scholar
Bisconti, R. et al. Evolution of personality and locomotory performance traits during a Late Pleistocene island colonization in a tree frog. Curr. Zool. 69, 631–641, https://doi.org/10.1093/cz/zoac062 (2023).
Article
PubMed
Google Scholar
Kosch, T. A. et al. Comparative analysis of amphibian genomes: An emerging resource for basic and applied research. Mol. Ecol. Resour. 25, e14025, https://doi.org/10.1111/1755-0998.14025 (2025).
Article
PubMed
Google Scholar
Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): A versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res 8, 24, https://doi.org/10.12688/wellcomeopenres.18658.1 (2023).
Article
PubMed
PubMed Central
Google Scholar
Morescalchi, A. Evolution and karyology of the amphibians. Boll. Zool. 47, 113–126, https://doi.org/10.1080/11250008009438709 (1980).
Article
Google Scholar
Bredeson, J. V. et al. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat. Commun. 15, 579, https://doi.org/10.1038/s41467-023-43012-9 (2024).
Article
ADS
PubMed
PubMed Central
Google Scholar
Jeffries, D. L. et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 9, 4088, https://doi.org/10.1038/s41467-018-06517-2 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Dufresnes, C., Brelsford, A., Baier, F. & Perrin, N. When sex chromosomes recombine only in the heterogametic sex: Heterochiasmy and heterogamety in Hyla tree frogs. Mol. Biol. Evol. 38, 192–200, https://doi.org/10.1093/molbev/msaa201 (2021).
Article
PubMed
Google Scholar
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746, https://doi.org/10.1038/s41586-021-03451-0 (2021).
Article
ADS
PubMed
PubMed Central
Google Scholar
Libro, P. et al. First brain de novo transcriptome of the Tyrrhenian tree frog, Hyla sarda, for the study of dispersal behavior. Front. Ecol. Evol. 10, 947186, https://doi.org/10.3389/fevo.2022.947186 (2022).
Article
Google Scholar
Larivière, D. et al. Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy. Nat. Biotechnol. 42, 367–370, https://doi.org/10.1038/s41587-023-02100-3 (2024).
Article
PubMed
PubMed Central
Google Scholar
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).
Article
PubMed
PubMed Central
Google Scholar
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432, https://doi.org/10.1038/s41467-020-14998-3 (2020).
Article
ADS
PubMed
PubMed Central
Google Scholar
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175, https://doi.org/10.1038/s41592-020-01056-5 (2021).
Article
PubMed
PubMed Central
Google Scholar
Bocklandt, S., Hastie, A. & Cao, H. Bionano genome mapping: High-throughput, ultra-long molecule genome analysis system for precision genome assembly and haploid-resolved structural variation discovery. in Single molecule and single cell sequencing. Advances in Experimental Medicine and Biology, vol 1129 (ed. Suzuki, Y.) 97-118 https://doi.org/10.1007/978-981-13-6037-4_7 (Springer, Singapore, 2019).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 https://doi.org/10.48550/arXiv.1303.3997 (2013).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
Article
PubMed
PubMed Central
Google Scholar
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808, https://doi.org/10.1093/bioinformatics/btac808 (2023).
Article
PubMed
Google Scholar
Howe, K. et al. Significantly improving the quality of genome assemblies through curation. Gigascience 10, giaa153, https://doi.org/10.1093/gigascience/giaa153 (2021).
Article
PubMed
PubMed Central
Google Scholar
Vertebrate Genomes Project & NCBI RefSeq Hyla sarda genome assembly aHylSar1.hap1. NCBI GenBank http://identifiers.org/assembly:GCF_029499605.1 (2023)
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome research 19, 1639–1645, http://www.genome.org/cgi/doi/10.1101/gr.092759.109 (2009).
PubMed
PubMed Central
Google Scholar
Baril, T., Galbraith, J. & Hayward, A. Earl Grey: A fully automated user-friendly transposable element annotation and analysis pipeline. Mol. Biol. Evol. 41, msae068, https://doi.org/10.1093/molbev/msae068 (2024).
Article
PubMed
PubMed Central
Google Scholar
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).
Article
ADS
PubMed
PubMed Central
Google Scholar
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013-2015. (2015).
Storer, J., Hubley, R., Rosen, J., Wheeler, T. J. & Smit, A. F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 12, 1–14, https://doi.org/10.1186/s13100-020-00230-y (2021).
Article
Google Scholar
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 1–6, https://doi.org/10.1186/s13100-015-0041-9 (2015).
Article
Google Scholar
Thibaud-Nissen, F., Souvorov, A., Murphy, T. D., DiCuccio, M. & Kitts, P. P8008 the NCBI eukaryotic genome annotation pipeline. Journal of Animal Science 94, 184–184, https://doi.org/10.2527/jas2016.94supplement4184x (2016).
Article
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).
Article
PubMed
Google Scholar
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654, https://doi.org/10.1093/molbev/msab199 (2021).
Article
PubMed
PubMed Central
Google Scholar
Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811, https://doi.org/10.1093/nar/gky1053 (2019).
Article
PubMed
Google Scholar
Nevers, Y. et al. Quality assessment of gene repertoire annotations with OMArk. Nat. Biotechnol. 43, 124–133, https://doi.org/10.1038/s41587-024-02147-w (2025).
Article
PubMed
Google Scholar
Uliano-Silva, M. et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics 24, 288, https://doi.org/10.1186/s12859-023-05385-y (2023).
Article
PubMed
PubMed Central
Google Scholar
Allio, R. et al. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892–905, https://doi.org/10.1111/1755-0998.13160 (2020).
Article
PubMed
PubMed Central
Google Scholar
Hyla annectans mitochondrion, complete genome. NCBI GenBank http://identifiers.org/insdc:KM271781.1 (2019)
Vertebrate Genomes Project. Hyla sarda genome assembly aHylSar1.hap2. NCBI GenBank http://identifiers.org/assembly:GCA_029493135.1 (2023).
Hyla sarda isolate aHylSar1 mitochondrion, complete sequence, whole genome shotgun sequence. NCBI GenBank http://identifiers.org/insdc:CM056048.1 (2023)
Formenti, G. et al. Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs. Bioinformatics 38, 4214–4216, https://doi.org/10.1093/bioinformatics/btac460 (2022).
Article
PubMed
PubMed Central
Google Scholar
Brown, M. R., Gonzalez de La Rosa, P. & Blaxter, M. tidk: a toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics 41, btaf049, https://doi.org/10.1093/bioinformatics/btaf049 (2025).
Article
PubMed
PubMed Central
Google Scholar