Wu, Y. & Gao, X. Can the establishment of eco-industrial parks promote urban green innovation? Evidence from China. J. Clean. Prod. 341, 130855 (2022).
Google Scholar
Ungureanu, P., Cochis, C., Bertolotti, F., Mattarelli, E. & Scapolan, A. C. Multiplex boundary work in innovation projects: the role of collaborative spaces for cross-functional and open innovation. Eur. J. Innov. Manage. 24, 984–1010 (2020).
Google Scholar
Xu, J., Qiu, B., Zhang, F. & Zhang, J. Restorative effects of pocket parks on mental fatigue among young adults: A comparative experimental study of three park types. Forests 15, 286 (2024).
Google Scholar
Sallis, J. F., Johnson, M. F., Calfas, K. J., Caparosa, S. & Nichols, J. F. Assessing perceived physical environmental variables that May influence physical activity. Res. Q. Exerc. Sport. https://doi.org/10.1080/02701367.1997.10608015 (1997). https://www.tandfonline.com/doi/abs/
Google Scholar
Ewing, R. H. et al. Measuring Urban Design: Metrics for Livable Places Vol. 200 (Island, 2013).
B., M. A. The uses of big data in cities. Big Data. https://doi.org/10.1089/big.2013.0042 (2014). doi:10.1089/big.2013.0042.
Google Scholar
Caruelle, D., Gustafsson, A., Shams, P. & Lervik-Olsen, L. The use of electrodermal activity (EDA) measurement to understand consumer emotions–a literature review and a call for action. J. Bus. Res. 104, 146–160 (2019).
Google Scholar
Kim, M., Cheon, S. & Kang, Y. Use of electroencephalography (EEG) for the analysis of emotional perception and fear to nightscapes. Sustainability 11, 233 (2019).
Google Scholar
Reece, R., Bornioli, A., Bray, I. & Alford, C. Exposure to green and historic urban environments and mental well-being: results from EEG and psychometric outcome measures. Int. J. Environ. Res. Public Health. 19, 13052 (2022).
Google Scholar
Liang, H., Zhang, J., Li, Y., Zhu, Z. & Wang, B. Automatic estimation for visual quality changes of street space via street-view images and multimodal large language models. (2023). https://www.preprints.org/frontend/manuscript/1c3c24d0ed8f219c5cfacb49b1c49c12/download_pub
Malekzadeh, M., Willberg, E., Torkko, J. & Toivonen, T. Urban attractiveness according to chatgpt: contrasting AI and human insights. Comput. Environ. Urban Syst. 117, 102243 (2025).
Google Scholar
Blečić, I., Saiu, V. & Trunfio, A. Enhancing urban walkability assessment with multimodal large Language models. In Computational Science and its Applications – ICCSA 2024 Workshops (eds Gervasi, O. et al.) 394–411 (Springer Nature Switzerland, 2024). https://doi.org/10.1007/978-3-031-65282-0_26.
Google Scholar
Ki, D., Lee, H., Park, K., Ha, J. & Lee, S. Measuring nuanced walkability: leveraging chatgpt’s vision reasoning with multisource Spatial data. Comput. Environ. Urban Syst. 121, 102319 (2025).
Google Scholar
Melnychenko, A., Shevchuk, N., Babiy, I., Blyznyuk, T. & Akimova, O. Transformation of industrial parks in the direction of providing of the purposes achievement of sustainable development. Int. J. Comput. Sci. Netw. Secur. 22, 7–14 (2022).
Google Scholar
Phan, P. H., Siegel, D. S. & Wright, M. Science parks and incubators: Observations, synthesis and future research. J. Bus. Ventur. 20, 165–182 (2005).
Google Scholar
Côté, R. P. & Cohen-Rosenthal, E. Designing eco-industrial parks: A synthesis of some experiences. J. Clean. Prod. 6, 181–188 (1998).
Google Scholar
Katz, B. & Wagner, J. The rise of urban innovation districts. Harv Bus. Rev 12. https://hbr.org/2014/11/the-rise-of-urban-innovation-districts (2014).
Amabile, T. M., Barsade, S. G., Mueller, J. S. & Staw, B. M. Affect and creativity at work. Adm. Sci. Q. 50, 367–403 (2005).
Google Scholar
Florida, R. Cities and the Creative Class (Routledge, 2005).
Glaeser, E. L. & Resseger, M. G. The complementarity between cities and skills. J. Reg. Sci. 50, 221–244 (2010).
Google Scholar
Wang, J., Tong, C. & Hu, X. Policy zoning method for innovation districts to sustainably develop the knowledge-economy: A case study in hangzhou, China. Sustainability 13, 3503 (2021).
Google Scholar
Bloom, N., Van Reenen, J. & Williams, H. A toolkit of policies to promote innovation. J. Economic Perspect. 33, 163–184 (2019).
Google Scholar
Maennig, W. & Ölschläger, M. Innovative milieux and regional competitiveness: the role of associations and chambers of commerce and industry in Germany. Reg. Stud. 45, 441–452 (2011).
Google Scholar
Kim, Y. A. & Hipp, J. R. Density, diversity, and design: three measures of the built environment and the Spatial patterns of crime in street segments. J. Criminal Justice. 77, 101864 (2021).
Google Scholar
Wang, X., Zhang, Y., Yu, D., Qi, J. & Li, S. Investigating the Spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in beijing, China. Land. Use Policy. 119, 106162 (2022).
Google Scholar
Dabrowska, J. Measuring the success of science parks: Performance monitoring and evaluation. (2011). https://repositorio.minciencias.gov.co/bitstream/handle/20.500.14143/265/1622-DABROWSKA_2011_MEASURING_TH.PDF?sequence=1
Bigliardi, B., Dormio, A. I., Nosella, A. & Petroni, G. Assessing science parks’ performances: directions from selected Italian case studies. Technovation 26, 489–505 (2006).
Google Scholar
Lu, J. et al. IOP Publishing,. Evaluation on synergetic innovation ability of environmental protection industrial park. in IOP Conference Series: Earth and Environmental Science vol. 598 012079 (2020).
Anderson, N. R. & West, M. A. Measuring climate for work group innovation: development and validation of the team climate inventory. J. Organiz Behav. 19, 235–258 (1998).
Google Scholar
Rui, J., Xu, Y., Cai, C. & Li, X. Leveraging large Language models for tourism research based on 5D framework: A collaborative analysis of tourist sentiments and Spatial features. Tour. Manag. 108, 105115 (2025).
Google Scholar
Liang, J. et al. GSV2SVF-an interactive GIS tool for sky, tree and Building view factor Estimation from street view photographs. Build. Environ. 168, 106475 (2020).
Google Scholar
Zhang, L. et al. Quantifying the urban visual perception of Chinese traditional-style Building with street view images. Appl. Sci. 10, 5963 (2020).
Google Scholar
He, N. & Li, G. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environ. Challenges. 4, 100090 (2021).
Google Scholar
Kostikova, A. et al. LLLMs: A data-driven survey of evolving research on limitations of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2505.19240 (2025).
Google Scholar
Hadi, M. U. et al. A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprints (2023). https://www.authorea.com/doi/full/10.36227/techrxiv.23589741.v3?commit=257b583a651fe9d363a4bce30dd48b38eb5a2bea
Liu, Y. et al. Sora: A review on background, technology, limitations, and opportunities of large vision models. Preprint at. https://doi.org/10.48550/arXiv.2402.17177 (2024).
Google Scholar
Wu, J. et al. Reinforcing Spatial reasoning in vision-language models with interwoven thinking and visual drawing. Preprint at. https://doi.org/10.48550/arXiv.2506.09965 (2025).
Google Scholar
Belaroussi, R. Subjective assessment of a built environment by ChatGPT, gemini and grok: comparison with architecture, engineering and construction expert perception. Big Data Cogn. Comput. 9, 100 (2025).
Google Scholar
Li, L., Ye, Y., Jiang, B., Zeng, W. & Georeasoner Geo-localization with reasoning in street views using a large vision-language model. in Forty-first International Conference on Machine Learning (2024).
Zhang, J., Li, Y., Fukuda, T. & Wang, B. Urban safety perception assessments via integrating multimodal large Language models with street view images. Cities 165, 106122 (2025).
Google Scholar
Shang, Y. et al. UrbanWorld: an urban world model for 3D City generation. Preprint at. https://doi.org/10.48550/arXiv.2407.11965 (2024).
Google Scholar
Zhang, D., Xiong, Z. & Zhu, X. Evaluation of thermal comfort in urban commercial space with vision–language-model-based agent model. Land 14, 786 (2025).
Google Scholar
Falotico, R. & Quatto, P. Fleiss’ kappa statistic without paradoxes. Qual. Quant. 49, 463–470 (2015).
Google Scholar
Ulrich, R. S. Stress reduction theory. D. Marchand, E. Pol, & K. Weiss (Eds.) 100, 143–146 (2023).
Basu, A., Duvall, J. & Kaplan, R. Attention restoration theory: exploring the role of soft fascination and mental bandwidth. Environ. Behav. 51, 1055–1081 (2019).
Google Scholar
Pham, T. P. & Sanocki, T. Human attention restoration, flow, and creativity: A conceptual integration. J. Imaging. 10, 83 (2024).
Google Scholar
Kothencz, G. & Blaschke, T. Urban parks: visitors’ perceptions versus Spatial indicators. Land. Use Policy. 64, 233–244 (2017).
Google Scholar
Dean, J. T. Noise, cognitive function, and worker productivity. Am. Economic Journal: Appl. Econ. 16, 322–360 (2024).
Google Scholar
Moultrie, J. et al. Innovation spaces: towards a framework for Understanding the role of the physical environment in innovation. Creativity Innov. Manage. 16, 53–65 (2007).
Google Scholar
Wu, K., Wang, Y., Zhang, H., Liu, Y. & Ye, Y. Impact of the built environment on the Spatial heterogeneity of regional innovation productivity: evidence from the Pearl river delta, China. Chin. Geogr. Sci. 31, 413–428 (2021).
Google Scholar
Stokols, D., Clitheroe, C. & Zmuidzinas, M. Qualities of work environments that promote perceived support for creativity. Creativity Res. J. 14, 137–147 (2002).
Google Scholar
Roe, D. Naturally artificial: the pre-raphaelite garden enclosed. Vic. Poetry. 57, 131–153 (2019).
Google Scholar
Daniel, G. R. Safe spaces for enabling the creative process in classrooms. Australian J. Teacher Educ. (Online). 45, 41–57 (2020).
Google Scholar
Caivano, J. L. Research on color in architecture and environmental design: brief history, current developments, and possible future. Color. Res. Application. 31, 350–363 (2006).
Google Scholar
Azudin, N., Ismail, M. N. & Taherali, Z. Knowledge sharing among workers: A study on their contribution through informal communication in cyberjaya, Malaysia. Knowl. Manage. E-Learning. 1, 139 (2009).
Google Scholar
Yun, J. J., Zhao, X., Yigitcanlar, T., Lee, D. & Ahn, H. Architectural design and open innovation symbiosis: insights from research campuses, manufacturing systems, and innovation districts. Sustainability 10, 4495 (2018).
Google Scholar
Moritz, E. The tapestry metaphor: Weaving meaning from threads. Experimenting with gemini Pro2. 5. (2025). https://www.researchgate.net/profile/Elan-Moritz/publication/390527921_The_Tapestry_Metaphor_Weaving_Meaning_from_Threads_Experimenting_with_Gemini_Pro25/links/67f1e276e8041142a16a2991/The-Tapestry-Metaphor-Weaving-Meaning-from-Threads-Experimenting-with-Gemini-Pro25.pdf
Comanici, G. et al. Gemini 2.5: pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. Preprint at. https://doi.org/10.48550/arXiv.2507.06261 (2025).
Google Scholar
OpenAI et al. GPT-4o system card. Preprint at. https://doi.org/10.48550/arXiv.2410.21276 (2024).
Google Scholar
Wang, Y. et al. AICrypto: A comprehensive benchmark for evaluating cryptography capabilities of large Language models. Preprint at. https://doi.org/10.48550/arXiv.2507.09580 (2025).
Google Scholar
Qiu, Y. et al. Human-aligned bench: Fine-grained assessment of reasoning ability in MLLMs vs. Hum. Preprint at. https://doi.org/10.48550/arXiv.2505.11141 (2025).
Google Scholar
Suzuki, K. Claude 3.5 sonnet indicated improved TNM classification on radiology report of pancreatic cancer. Jpn J. Radiol. 43, 56–57 (2025).
Google Scholar
Caplan, R. D. & Van Harrison, R. Person-environment fit theory: some history, recent developments, and future directions. J. Soc. Issues. 49, 253–275 (1993).
Google Scholar
Xu, L., Zhang, Y., Li, F. & Yin, J. Perceptual difference of urban public spaces between design professionals and ‘laypersons’: Evidence, health implications and ready-made urban design templates. Indoor Built Environ. https://doi.org/10.1177/1420326X221116318 (2022).
Google Scholar
Neilson, B. N., Craig, C. M., Travis, A. T. & Klein, M. I. A review of the limitations of attention restoration theory and the importance of its future research for the improvement of well-being in urban living. Visions Sustain. https://doi.org/10.13135/2384-8677/3323 (2019).
Google Scholar
Liu, Y., Zhang, J., Liu, C. & Yang, Y. A review of attention restoration theory: implications for designing restorative environments. Sustainability 16, 3639 (2024).
Google Scholar
Maslow, A. & Lewis, K. J. Maslow’s hierarchy of needs. Salenger Incorporated. 14, 987–990 (1987).
Google Scholar
Shafique, A. Hierarchy of user’s need for Spatial organisation in public open spaces. Eur. J. Archit. Urban Plann. 3, 1–8 (2024).
Google Scholar
Friedkin, N. A test of structural features of granovetter’s strength of weak ties theory. Social Networks. 2, 411–422 (1980).
Google Scholar
Markoç, İ. Twitter in the context of oldenburg’s third place theory. IBAD 79–89. https://doi.org/10.21733/ibad.610335 (2019).